• 创建模式->简单工厂模式-工厂方法模式-抽象工厂模式


    代码     可维护性 可复用性   可扩展性 灵活性,耦合度底   充分利用 封装 继承 多态性能

          设计模式-面向对象设计   数据结构-面向过程设计       面向对象设计  为的就是一个目标 高内聚 低耦合

          简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式(Static FactoryMethod Pattern),是通过专门定义一个类来负责创建其他类的实例,(类似本人做过的QCDraw中的GraphicFactory)

         考虑用一个单独的类来做这个创造实例的过程 这个就是工厂。

         软件领域中的设计模式为开发人员提供了一种使用专家设计经验的有效途径。设计模式中运用了面向对象编程语言的重要特性:封装、继承、多态,真正领悟设计模式的精髓是可能一个漫长的过程,需要大量实践经验的积累。最近看设计模式的书,对于每个模式,用C++写了个小例子,加深一下理解。主要参考《大话设计模式》和《设计模式:可复用面向对象软件的基础》两本书。本文介绍工厂模式的实现。

           工厂模式属于创建型模式,大致可以分为三类,简单工厂模式、工厂方法模式、抽象工厂模式。听上去差不多,都是工厂模式。下面一个个介绍,首先介绍简单工厂模式,它的主要特点是需要在工厂类中做判断,从而创造相应的产品。当增加新的产品时,就需要修改工厂类。有点抽象,举个例子就明白了。有一家生产处理器核的厂家,它只有一个工厂,能够生产两种型号的处理器核。客户需要什么样的处理器核,一定要显示地告诉生产工厂。下面给出一种实现方案。

    enum CTYPE {COREA, COREB};     
    class SingleCore    
    {    
    public:    
        virtual void Show() = 0;  
    };    
    //单核A    
    class SingleCoreA: public SingleCore    
    {    
    public:    
        void Show() { cout<<"SingleCore A"<<endl; }    
    };    
    //单核B    
    class SingleCoreB: public SingleCore    
    {    
    public:    
        void Show() { cout<<"SingleCore B"<<endl; }    
    };    
    //唯一的工厂,可以生产两种型号的处理器核,在内部判断    
    class Factory    
    {    
    public:     
        SingleCore* CreateSingleCore(enum CTYPE ctype)    
        {    
            if(ctype == COREA) //工厂内部判断     可以用 switch 循环进行判断
                return new SingleCoreA(); //生产核A    
            else if(ctype == COREB)    
                return new SingleCoreB(); //生产核B    
            else    
                return NULL;    
        }    
    };    

    简单工厂模式解决的问题是如何去实例化一个合适的对象。

           简单工厂模式的核心思想就是:有一个专门的类来负责创建实例的过程

           具体来说,把产品看着是一系列的类的集合,这些类是由某个抽象类或者接口派生出来的一个对象树。而工厂类用来产生一个合适的对象来满足客户的要求。  这样设计的主要缺点之前也提到过,就是要增加新的核类型时,就需要修改工厂类。这就违反了开放封闭原则(高内聚 低耦合):软件实体(类、模块、函数)可以扩展,但是不可修改。于是,工厂方法模式出现了。(在工厂类中进行具体的判定 到底建立那个类的对象)


     工厂方法模式

         所谓工厂方法模式,是指定义一个用于创建对象的接口(factory),让子类决定实例化哪一个类。Factory Method使一个类的实例化延迟到其子类。

        听起来很抽象,还是以刚才的例子解释。这家生产处理器核的产家赚了不少钱,于是决定再开设一个工厂专门用来生产B型号的单核,而原来的工厂专门用来生产A型号的单核。这时,客户要做的是找好工厂,比如要A型号的核,就找A工厂要;否则找B工厂要,不再需要告诉工厂具体要什么型号的处理器核了。下面给出一个实现方案。(在外面判定好需要建立那个类的对象)

    class SingleCore    
    {    
    public:    
        virtual void Show() = 0;  
    };    
    //单核A    
    class SingleCoreA: public SingleCore    
    {    
    public:    
        void Show() { cout<<"SingleCore A"<<endl; }    
    };    
    //单核B    
    class SingleCoreB: public SingleCore    
    {    
    public:    
        void Show() { cout<<"SingleCore B"<<endl; }    
    };    
    class Factory    
    {    
    public:    
        virtual SingleCore* CreateSingleCore() = 0;  
    };    
    //生产A核的工厂    
    class FactoryA: public Factory    
    {    
    public:    
        SingleCoreA* CreateSingleCore() { return new SingleCoreA; }    
    };    
    //生产B核的工厂    
    class FactoryB: public Factory    
    {    
    public:    
        SingleCoreB* CreateSingleCore() { return new SingleCoreB; }    
    };    

        工厂方法模式也有缺点,每增加一种产品,就需要增加一个对象的工厂。如果这家公司发展迅速,推出了很多新的处理器核,那么就要开设相应的新工厂。在C++实现中,就是要定义一个个的工厂类。显然,相比简单工厂模式,工厂方法模式需要更多的类定义。


    抽象工厂模式 Abstruct Factory

         既然有了简单工厂模式和工厂方法模式,为什么还要有抽象工厂模式呢?它到底有什么作用呢?还是举这个例子,这家公司的技术不断进步,不仅可以生产单核处理器,也能生产多核处理器。现在简单工厂模式和工厂方法模式都鞭长莫及。抽象工厂模式登场了。它的定义为提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。具体这样应用,这家公司还是开设两个工厂,一个专门用来生产A型号的单核和多核处理器,而另一个工厂专门用来生产B型号的单核和多核处理器,下面给出实现的代码。(就是有时候我们需要一个factory 可以产生一个品牌的多个对象)

    /单核    
    class SingleCore     
    {    
    public:    
        virtual void Show() = 0;  
    };    
    class SingleCoreA: public SingleCore      
    {    
    public:    
        void Show() { cout<<"Single Core A"<<endl; }    
    };    
    class SingleCoreB :public SingleCore    
    {    
    public:    
        void Show() { cout<<"Single Core B"<<endl; }    
    };    
    //多核    
    class MultiCore      
    {    
    public:    
        virtual void Show() = 0;  
    };    
    class MultiCoreA : public MultiCore      
    {    
    public:    
        void Show() { cout<<"Multi Core A"<<endl; }    
        
    };    
    class MultiCoreB : public MultiCore      
    {    
    public:    
        void Show() { cout<<"Multi Core B"<<endl; }    
    };    
    //工厂    
    class CoreFactory      
    {    
    public:    
        virtual SingleCore* CreateSingleCore() = 0;  
        virtual MultiCore* CreateMultiCore() = 0;  
    };    
    //工厂A,专门用来生产A型号的处理器    
    class FactoryA :public CoreFactory    
    {    
    public:    
        SingleCore* CreateSingleCore() { return new SingleCoreA(); }    
        MultiCore* CreateMultiCore() { return new MultiCoreA(); }    
    };    
    //工厂B,专门用来生产B型号的处理器    
    class FactoryB : public CoreFactory    
    {    
    public:    
        SingleCore* CreateSingleCore() { return new SingleCoreB(); }    
        MultiCore* CreateMultiCore() { return new MultiCoreB(); }    
    };   



    关注公众号 海量干货等你
  • 相关阅读:
    什么是 go vendor
    Golang包管理工具之govendor的使用
    国内的go get问题的解决
    集群、限流、缓存 BAT 大厂无非也就是这么做
    Gin框架中文文档
    GO——beego简单开发实例(二)
    C++11 并发指南四(<future> 详解一 std::promise 介绍)(转)
    C++11 并发指南三(std::mutex 详解)(转)
    C++11 并发指南二(std::thread 详解)(转)
    用C++设计一个不能被继承的类(转)
  • 原文地址:https://www.cnblogs.com/sowhat1412/p/12734434.html
Copyright © 2020-2023  润新知