我们假设硬币有两面,一面是“花”,一面是“字”。 一般来说,我们都觉得硬币是公平的,也就是“花”和“字”出现的概率是差不多的。 如果我扔了100次硬币,100次出现的都是“花”。 在这样的事实下,我觉得似乎硬币的参数不是公平的。你硬要说是公平的,那就是侮辱我的智商。 这种通过事实,反过来猜测硬币的情况,就是似然。 而且,我觉得最有可能的硬币的情况是,两面都是“花”: 通过事实,推断出最有可能的硬币情况,就是最大似然估计。 1 概率vs似然 让我们先来比较下概率和似然。 为了避免和我们想讨论的概率混淆,我们把硬币的“花”出现的概率称为硬币的参数。 1.1 概率 已知硬币的参数,就可以去推测抛硬币的各种情况的可能性,这称为概率。 比如已知硬币是公平的,也就是硬币的参数为0.5。 那么我们就可以推测,扔10次硬币,出现5次“花”朝上的概率为(抛硬币遵循二项分布,这个就不多解释了): 1.2 似然 正如开头所说,我们对硬币的参数并不清楚,要通过抛硬币的情况去推测硬币的参数,这称为似然。 可以再举不那么恰当(主要模型不好建立)的例子,蹭下热点。 比如我们发现,鹿晗和关晓彤戴同款手链,穿同款卫衣: 我们应该可以推测这两人关系的“参数”是“亲密”。 进一步发现,两人在同一个地方跨年: 似乎,关系的“参数”是“不简单”。 最后,关晓彤号称要把初吻留给男友,但是最近在荧幕中献出初吻,对象就是鹿晗 我觉得最大的可能性,关系的“参数”是“在一起”。 通过证据,对两人的关系的“参数”进行推断,叫做似然,得到最可能的参数,叫做最大似然估计。 2 最大似然估计 来看看怎么进行最大似然估计。 2.1 具体的例子 我们实验的结果是,10次抛硬币,有6次是“花”。 所谓最大似然估计,就是假设硬币的参数,然后计算实验结果的概率是多少,概率越大的,那么这个假设的参数就越可能是真的。 我们先看看硬币是否是公平的,就用0.5作为硬币的参数,实验结果的概率为: 单独的一次计算没有什么意义,让我们继续往后面看。 再试试用0.6作为硬币的参数,实验结果的概率为 之前说了,单次计算没有什么意义,但是两次计算进行比较就有意义了。 可以看到: 0.25/0.21 = 1.2 我们可以认为,0.6作为参数的可能性是0.5作为参数的可能性的1.2倍。 2.2 作图 我们设硬币的参数为 ,可以得到似然函数为: 这样我们就可以作图了: 我们可以从图中看出两点:
所以更准确的说,似然(现在可以说似然函数了)是推测参数的分布。 而求最大似然估计的问题,就变成了求似然函数的极值。在这里,极值出现在0.6。 2.3 更多的实验结果 此时,0.6作为参数的可能性是0.5作为参数的可能性的8倍,新的实验结果更加支持0.6这个参数。 图像为: 很明显图像缩窄了,可以这么解读,可选的参数的分布更集中了。越多的实验结果,让参数越来越明确。 2.4 更复杂一些的最大似然估计 2.4.1 数学名词 下面提升一点难度,开始采用更多的数学名词了。 先说一下数学名词:
2.4.2 多次实验 之前的例子只做了一次实验。只做一次实验,没有必要算这么复杂,比如投掷100次,出现了60次“花”,我直接: 不就好了? 最大似然估计真正的用途是针对多次实验。 2.4.3 上帝视角 2.4.4 通过多次实验进行最大似然估计
|