• KNN算法理解


    一、算法概述

    1、kNN算法又称为k近邻分类(k-nearest neighbor classification)算法。
    最简单平凡的分类器也许是那种死记硬背式的分类器,记住所有的训练数据,对于新的数据则直接和训练数据匹配,如果存在相同属性的训练数据,则直接用它的分类来作为新数据的分类。这种方式有一个明显的缺点,那就是很可能无法找到完全匹配的训练记录。

    kNN算法则是从训练集中找到和新数据最接近的k条记录,然后根据他们的主要分类来决定新数据的类别。该算法涉及3个主要因素:训练集、距离或相似的衡量、k的大小。

    2、行业应用
    客户流失预测、欺诈侦测等(更适合于稀有事件的分类问题)

    二、算法要点

    1、指导思想
    kNN算法的指导思想是“近朱者赤,近墨者黑”,由你的邻居来推断出你的类别。

    计算步骤如下:
        1)算距离:给定测试对象,计算它与训练集中的每个对象的距离
        2)找邻居:圈定距离最近的k个训练对象,作为测试对象的近邻
        3)做分类:根据这k个近邻归属的主要类别,来对测试对象分类

    2、距离或相似度的衡量
    什么是合适的距离衡量?距离越近应该意味着这两个点属于一个分类的可能性越大。距离衡量包括欧式距离、夹角余弦等。
    对于文本分类来说,使用余弦(cosine)来计算相似度就比欧式(Euclidean)距离更合适。

    3、类别的判定
    投票决定:少数服从多数,近邻中哪个类别的点最多就分为该类。
    加权投票法:根据距离的远近,对近邻的投票进行加权,距离越近则权重越大(权重为距离平方的倒数)

    三、优缺点

    1、优点
    简单,易于理解,易于实现,无需估计参数,无需训练
    适合对稀有事件进行分类(例如当流失率很低时,比如低于0.5%,构造流失预测模型)
    特别适合于多分类问题(multi-modal,对象具有多个类别标签),例如根据基因特征来判断其功能分类,kNN比SVM的表现要好

    2、缺点
    懒惰算法,对测试样本分类时的计算量大,内存开销大,评分慢
    可解释性较差,无法给出决策树那样的规则。

    四、常见问题

    1、k值设定为多大?
    k太小,分类结果易受噪声点影响;k太大,近邻中又可能包含太多的其它类别的点。(对距离加权,可以降低k值设定的影响)
    k值通常是采用交叉检验来确定(以k=1为基准)
    经验规则:k一般低于训练样本数的平方根

    2、类别如何判定最合适?
    投票法没有考虑近邻的距离的远近,距离更近的近邻也许更应该决定最终的分类,所以加权投票法更恰当一些。

    3、如何选择合适的距离衡量?
    高维度对距离衡量的影响:众所周知当变量数越多,欧式距离的区分能力就越差。
    变量值域对距离的影响:值域越大的变量常常会在距离计算中占据主导作用,因此应先对变量进行标准化。

    4、训练样本是否要一视同仁?
    在训练集中,有些样本可能是更值得依赖的。
    可以给不同的样本施加不同的权重,加强依赖样本的权重,降低不可信赖样本的影响。

    5、性能问题?
    kNN是一种懒惰算法,平时不好好学习,考试(对测试样本分类)时才临阵磨枪(临时去找k个近邻)。
    懒惰的后果:构造模型很简单,但在对测试样本分类地的系统开销大,因为要扫描全部训练样本并计算距离。
    已经有一些方法提高计算的效率,例如压缩训练样本量等。

    6、能否大幅减少训练样本量,同时又保持分类精度?
    浓缩技术(condensing)
    编辑技术(editing)

  • 相关阅读:
    虚函数&纯虚函数&抽象类&虚继承
    指针的各式定义
    开源站点
    WCF、Net remoting、Web service概念及区别
    asp.net 分布式应用开发
    C++多重继承二义性解决
    ATL7窗口类详细剖析
    Code review
    GitHub 上100个最受欢迎的Java基础类库
    JAVA基本类库介绍
  • 原文地址:https://www.cnblogs.com/souxun2014/p/4055979.html
Copyright © 2020-2023  润新知