python
algorithm
全排列(Permutation)
排列 (Permutation)是将相异物件或符号根据确定的顺序重排。每个顺序都称作一个排列。
例如,从一到六的数字有720种排列,对应于由这些数字组成的所有不重复亦不阙漏的序列,例如4, 5, 6, 1, 2, 3 与1, 3, 5, 2, 4, 6。 -- From Wikipedia
从(n)个相异元素中取出 (k)个元素,(k)个元素的排列数量为:
其中(P)意为Permutation(排列),(!)表示阶乘运算。全排列而取(k)为(n),则结果为(n!)。
全排列生成算法
-
字典序法
字典序,就是将元素按照字典的顺序(a-z, 1-9)实际上是ASCII编码值进行排列。以字典的顺序作为比较的依据,可以比较出两个串的大小。
比如 "1" < "13"<"14"<"153", 就是按每个数字位逐个比较的结果。对于一个串(“123456789”), 可以知道最小的串是(“123456789”),而最大的串(“987654321”)。这样针对这个串以字典序法生成全排列生成全排列,就是依次生成[“123456789”->“123456798”->......->"987654312"->"987654321" ]这样的串。字典序法要求这一个与下一个有尽可能长的共同前缀,也即变化限制在尽可能短的后缀上。
-
邻位对换法
该算法由Johnson-Trotter首先提出,是一个能快速生成全排列的算法。它的下一个全排列总是上一个全排列对换某相邻两位得到的。如果已知n-1个元素的排列,将n插入到排列的不同位置,就得到了n个元素的排列。用这种方法可以产生出任意n个元素的排列。这个方法有一个缺点:为了产生n个元素的排列,我们必须知道并存储所有n-1个元素的排列,然后才能产生出所有n阶排列。
-
递增进位制法
这个算法是基于序列的递增进位制数[3]。递增进位制数是指数字的进制随着位数的递增而递增。一般情况下,数字最右边的进制是2,次右边的进制是3,以此类推。n位递增进位制数一共包含n!个数字,所以它可以与全排列生成算法结合在一起。
-
递减进位制法
该方法与递增进位制法的原理相似,不同的是它定义的“递减进位制数”是数字的进制随着位数的递增而递减。这种进制一般最左边的进制是2,次左边的进制是3。其余原理与递增进位制法基本相同。
Python实现
字典序法
非递归算法
设(P)是集合({1,2,……n-1,n})的一个全排列:
(P=P_1P_2……P_{j-1}P_jP_{j+1}…P_n(1≤P_1,P_2,……,P_n≤n))
-
从排列的右端开始,找出第一个比右边数字小的数字的序号j,即
[j=max{ j|Pj<Pj+1, 1 < j < n} ]在(P_j)的右边的数字中,找出所有比(P_j)大的数字中最小的数字(P_k),即
[P_k=min{Pi|P_i>P_j,i>j} ] -
交换(P_j),(P_k)
-
再将排列右端的递减部分(P_{j+1}P_{j+2}…P_n) 倒序可以得到一个新的排列
(P'=P_1P_2…P_{j-1}P_kP_n…P_j..P_{j+2}P_{j+1})
代码
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
@author: gsharp
"""
def Swap(n,a,b):
n[a],n[b] = n[b],n[a]
return None
# 从n[begin]开始反转数组 xxx543->xxx345
def Reverse(n,begin):
if len(n) > begin:
i = begin
j = len(n)-1
while i < j:
Swap(n,i,j)
i += 1
j -= 1
return n
# 查找n[i-1:size]中比n[i]大的最小数
def FindMin(n,i):
j = len(n)-1
k = i + 1
while j > i:
if n[j] > n[i] and n[j] < n[k]:
k = j
j -= 1
return k
def Permut(n):
count = 0
j = len(n) -1
if j < 1:
return n
else :
print n
count += 1
while j >= 1:
i = j - 1
if n[i] < n [j] : # 逆序找到第一个小于右侧数的位置i
k = FindMin(n,i)
Swap (n,i,k)
Reverse (n,j)
j = len(n) - 1
count += 1
print n
else :
j -= 1
print count
n =[1,2,3,4,5,6]
Permut(n)
注意:
- 这里只能对于具有可比较值的列表排序,对于如【'~','!','@','#'】无法直接排序。
- 初始序列必须为最小序列,否则无法列出全部排列。可先使用快速排序来排序后作为输入。