• Kafka


    Kafka 是一个分布式流式处理平台。

    三个关键功能:

    1. 消息队列:发布和订阅消息流,这个功能类似于消息队列,这也是 Kafka 也被归类为消息队列的原因。
    2. 容错的持久方式存储记录消息流: Kafka 会把消息持久化到磁盘,有效避免了消息丢失的风险·。
    3. 流式处理平台: 在消息发布的时候进行处理,Kafka 提供了一个完整的流式处理类库。

    Kafka 主要有两大应用场景:

    1. 消息队列 :建立实时流数据管道,以可靠地在系统或应用程序之间获取数据。
    2. 数据处理: 构建实时的流数据处理程序来转换或处理数据流。

    和其他消息队列相比,Kafka的优势

    我们现在经常提到 Kafka 的时候就已经默认它是一个非常优秀的消息队列了,我们也会经常拿它给 RocketMQ、RabbitMQ 对比。我觉得 Kafka 相比其他消息队列主要的优势如下:

    1. 极致的性能 :基于 Scala 和 Java 语言开发,设计中大量使用了批量处理和异步的思想,最高可以每秒处理千万级别的消息。
    2. 生态系统兼容性无可匹敌 :Kafka 与周边生态系统的兼容性是最好的没有之一,尤其在大数据和流计算领域。

    队列模型与Kafka 的消息模型

    队列模型:早期的消息模型

    使用队列(Queue)作为消息通信载体,满足生产者与消费者模式,一条消息只能被一个消费者使用,未被消费的消息在队列中保留直到被消费或超时。 比如:我们生产者发送 100 条消息的话,两个消费者来消费一般情况下两个消费者会按照消息发送的顺序各自消费一半(也就是你一个我一个的消费。)

    队列模型存在的问题:

    假如我们存在这样一种情况:我们需要将生产者产生的消息分发给多个消费者,并且每个消费者都能接收到完成的消息内容。

    发布-订阅模型:Kafka 消息模型

    发布-订阅模型主要是为了解决队列模型存在的问题。

    发布订阅模型(Pub-Sub) 使用主题(Topic) 作为消息通信载体,类似于广播模式;发布者发布一条消息,该消息通过主题传递给所有的订阅者,在一条消息广播之后才订阅的用户则是收不到该条消息的。

    在发布 - 订阅模型中,如果只有一个订阅者,那它和队列模型就基本是一样的了。所以说,发布 - 订阅模型在功能层面上是可以兼容队列模型的。

    Kafka 采用的就是发布 - 订阅模型。

    RocketMQ 的消息模型和 Kafka 基本是完全一样的。唯一的区别是 Kafka 中没有队列这个概念,与之对应的是 Partition(分区)。

    什么是Producer、Consumer、Broker、Topic、Partition?

    Kafka 将生产者发布的消息发送到 Topic(主题) 中,需要这些消息的消费者可以订阅这些 Topic(主题),如下图所示:

    1. Producer(生产者) : 产生消息的一方。
    2. Consumer(消费者) : 消费消息的一方。
    3. Broker(代理) : 可以看作是一个独立的 Kafka 实例。多个 Kafka Broker 组成一个 Kafka Cluster。

    同时,你一定也注意到每个 Broker 中又包含了 Topic 以及 Partition 这两个重要的概念:

    Topic(主题) : Producer 将消息发送到特定的主题,Consumer 通过订阅特定的 Topic(主题) 来消费消息。

    Partition(分区) : Partition 属于 Topic 的一部分。一个 Topic 可以有多个 Partition ,并且同一 Topic 下的 Partition 可以分布在不同的 Broker 上,这也就表明一个 Topic 可以横跨多个 Broker 。这正如我上面所画的图一样。

    Kafka 的多副本机制

    还有一点我觉得比较重要的是 Kafka 为分区(Partition)引入了多副本(Replica)机制。分区(Partition)中的多个副本之间会有一个叫做 leader 的家伙,其他副本称为 follower。我们发送的消息会被发送到 leader 副本,然后 follower 副本才能从 leader 副本中拉取消息进行同步。

    生产者和消费者只与 leader 副本交互。你可以理解为其他副本只是 leader 副本的拷贝,它们的存在只是为了保证消息存储的安全性。当 leader 副本发生故障时会从 follower 中选举出一个 leader,但是 follower 中如果有和 leader 同步程度达不到要求的参加不了 leader 的竞选。

    Kafka 的多分区(Partition)以及多副本(Replica)机制的作用

    1. Kafka 通过给特定 Topic 指定多个 Partition, 而各个 Partition 可以分布在不同的 Broker 上, 这样便能提供比较好的并发能力(负载均衡)。
    2. Partition 可以指定对应的 Replica 数, 这也极大地提高了消息存储的安全性, 提高了容灾能力,不过也相应的增加了所需要的存储空间。

    Zookeeper 在 Kafka 中的作用

    ZooKeeper 主要为 Kafka 提供元数据的管理的功能。

    从图中我们可以看出,Zookeeper 主要为 Kafka 做了下面这些事情:

    1. Broker 注册 :在 Zookeeper 上会有一个专门用来进行 Broker 服务器列表记录的节点。每个 Broker 在启动时,都会到 Zookeeper 上进行注册,即到/brokers/ids 下创建属于自己的节点。每个 Broker 就会将自己的 IP 地址和端口等信息记录到该节点中去
    2. Topic 注册 : 在 Kafka 中,同一个Topic 的消息会被分成多个分区并将其分布在多个 Broker 上,这些分区信息及与 Broker 的对应关系也都是由 Zookeeper 在维护。比如我创建了一个名字为 my-topic 的主题并且它有两个分区,对应到 zookeeper 中会创建这些文件夹:/brokers/topics/my-topic/Partitions/0/brokers/topics/my-topic/Partitions/1
    3. 负载均衡 :上面也说过了 Kafka 通过给特定 Topic 指定多个 Partition, 而各个 Partition 可以分布在不同的 Broker 上, 这样便能提供比较好的并发能力。 对于同一个 Topic 的不同 Partition,Kafka 会尽力将这些 Partition 分布到不同的 Broker 服务器上。当生产者产生消息后也会尽量投递到不同 Broker 的 Partition 里面。当 Consumer 消费的时候,Zookeeper 可以根据当前的 Partition 数量以及 Consumer 数量来实现动态负载均衡。

    Kafka 如何保证消息的消费顺序

    Kafka 只能为我们保证 Partition(分区) 中的消息有序,而不能保证 Topic(主题) 中的 Partition(分区) 的有序。

    消息在被追加到 Partition(分区)的时候都会分配一个特定的偏移量(offset)。Kafka 通过偏移量(offset)来保证消息在分区内的顺序性。

    所以,我们就有一种很简单的保证消息消费顺序的方法:1 个 Topic 只对应一个 Partition。这样当然可以解决问题,但是破坏了 Kafka 的设计初衷。

    Kafka 中发送 1 条消息的时候,可以指定 topic, partition, key,data(数据) 4 个参数。如果你发送消息的时候指定了 Partition 的话,所有消息都会被发送到指定的 Partition。并且,同一个 key 的消息可以保证只发送到同一个 partition,这个我们可以采用表/对象的 id 来作为 key 。

    总结一下,对于如何保证 Kafka 中消息消费的顺序,有了下面两种方法:

    1.1 个 Topic 只对应一个 Partition。

    2.(推荐)发送消息的时候指定 key/Partition。

    Kafka 如何保证消息不丢失

    1.生产者丢失消息的情况

    生产者(Producer) 调用send方法发送消息之后,消息可能因为网络问题并没有发送过去。

    2.消费者丢失消息的情况

    当消费者拉取到了分区的某个消息之后,消费者会自动提交了 offset。自动提交的话会有一个问题,试想一下,当消费者刚拿到这个消息准备进行真正消费的时候,突然挂掉了,消息实际上并没有被消费,但是 offset 却被自动提交了。

    3.Kafka 弄丢了消息

    假如 leader 副本所在的 broker 突然挂掉,那么就要从 follower 副本重新选出一个 leader ,但是 leader 的数据还有一些没有被 follower 副本的同步的话,就会造成消息丢失。

    解决办法:

    设置 acks = all

    解决办法就是我们设置 acks = all。acks 是 Kafka 生产者(Producer) 很重要的一个参数。

    acks 的默认值即为1,代表我们的消息被leader副本接收之后就算被成功发送。当我们配置 acks = all 则代表所有副本都要接收到该消息之后该消息才算真正成功被发送。

    设置 replication.factor >= 3

    为了保证 leader 副本能有 follower 副本能同步消息,我们一般会为 topic 设置 replication.factor >= 3。这样就可以保证每个 分区(partition) 至少有 3 个副本。虽然造成了数据冗余,但是带来了数据的安全性。

    设置 min.insync.replicas > 1

    一般情况下我们还需要设置 min.insync.replicas> 1 ,这样配置代表消息至少要被写入到 2 个副本才算是被成功发送。min.insync.replicas 的默认值为 1 ,在实际生产中应尽量避免默认值 1。

    但是,为了保证整个 Kafka 服务的高可用性,你需要确保 replication.factor > min.insync.replicas 。为什么呢?设想一下假如两者相等的话,只要是有一个副本挂掉,整个分区就无法正常工作了。这明显违反高可用性!一般推荐设置成 replication.factor = min.insync.replicas + 1。

    设置 unclean.leader.election.enable = false

    发送的消息会被发送到 leader 副本,然后 follower 副本才能从 leader 副本中拉取消息进行同步。多个 follower 副本之间的消息同步情况不一样,当我们配置了 unclean.leader.election.enable = false 的话,当 leader 副本发生故障时就不会从 follower 副本中和 leader 同步程度达不到要求的副本中选择出 leader ,这样降低了消息丢失的可能性。

  • 相关阅读:
    [NOIP2011提高组]聪明的质监员
    NOIP 2010 关押罪犯
    题目:埃及分数
    用scanf输入long long 型的数
    poj 1014 Dividing
    Cactus
    SQLite数据库的增删改查代码
    UltraGrid常用方法属性代码
    维护数据表常用SQL语句
    C#备份收藏夹代码
  • 原文地址:https://www.cnblogs.com/songyuejie/p/12553738.html
Copyright © 2020-2023  润新知