• hdu 5086 Revenge of Segment Tree


    Revenge of Segment Tree

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 845    Accepted Submission(s): 302


    Problem Description
    In computer science, a segment tree is a tree data structure for storing intervals, or segments. It allows querying which of the stored segments contain a given point. It is, in principle, a static structure; that is, its content cannot be modified once the structure is built. A similar data structure is the interval tree.
    A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time. Segment trees support searching for all the intervals that contain a query point in O(log n + k), k being the number of retrieved intervals or segments.
    ---Wikipedia

    Today, Segment Tree takes revenge on you. As Segment Tree can answer the sum query of a interval sequence easily, your task is calculating the sum of the sum of all continuous sub-sequences of a given number sequence.
     
    Input
    The first line contains a single integer T, indicating the number of test cases. 

    Each test case begins with an integer N, indicating the length of the sequence. Then N integer Ai follows, indicating the sequence.

    [Technical Specification]
    1. 1 <= T <= 10
    2. 1 <= N <= 447 000
    3. 0 <= Ai <= 1 000 000 000
     
    Output
    For each test case, output the answer mod 1 000 000 007.
     
    Sample Input
    2 1 2 3 1 2 3
     
    Sample Output
    2 20
    Hint
    For the second test case, all continuous sub-sequences are [1], [2], [3], [1, 2], [2, 3] and [1, 2, 3]. So the sum of the sum of the sub-sequences is 1 + 2 + 3 + 3 + 5 + 6 = 20. Huge input, faster I/O method is recommended. And as N is rather big, too straightforward algorithm (for example, O(N^2)) will lead Time Limit Exceeded. And one more little helpful hint, be careful about the overflow of int.
     
    Source
     
     
    #include<cstdio>
    #include<iostream>
    #define mod 1000000007
    using namespace std;
    __int64 a[500000];
    __int64 sum;
    int main()
    {
        __int64 i,j,n;
        int t;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%I64d",&n);
            sum=0;
            for(i=1;i<=n;i++)
            {
                scanf("%I64d",&a[i]);
                sum+=a[i]*(i * (n - i + 1)%mod);// 主要注意这里会超long long 所以要在内部取余
                sum%=mod;
            }
            printf("%I64d
    ",sum);
        }
        return 0;
    }
    

      

  • 相关阅读:
    A Complete Tutorial to Learn Data Science with Python from Scratch
    OpenGL学习--08--基本渲染(灯光)
    OpenGL学习--07--模型加载(obj)
    OpenGL学习--06--键盘与鼠标交互
    OpenGL学习--05--纹理立方体--代码
    OpenGL学习--05--纹理立方体--BMP文件格式详解(转载)
    OpenGL学习—04--彩色立方体
    OpenGL学习--03--矩阵
    OpenGL学习--02--绘制一个红色三角形
    OpenGL学习--01--打开一个窗口
  • 原文地址:https://www.cnblogs.com/sola1994/p/4072170.html
Copyright © 2020-2023  润新知