• 二叉搜索树(Binary Search Tree)--C语言描述(转)


    图解二叉搜索树概念

    二叉树呢,其实就是链表的一个二维形式,而二叉搜索树,就是一种特殊的二叉树,这种二叉树有个特点:对任意节点而言,左孩子(当然了,存在的话)的值总是小于本身,而右孩子(存在的话)的值总是大于本身。

    下面来介绍在此种二叉树结构上的查找,插入,删除算法思路。

    查找:因为这种结构就是为了来方便查找的,所以查找其中的某个值很容易,从根开始,小的往左找,大的往右找,不大不小的就是这个节点了;

    代码很简单,这里就不写了。

    插入:插入一样的道理,从根开始,小的往左,大的往右,直到叶子,就插入。

    代码:

    复制代码
    int Insert(BSTree *T,data_type data)//插入数据
    {
        BSTree newnode,p;
        newnode = (BSTree)malloc(sizeof(BSNode));
        newnode->lchild = newnode->rchild = NULL;
        newnode->data = data;
        if(*T == NULL)
        {
            *T = newnode;
        }
        else
        {
            p = *T;
            while(1)
            {
                if(data == p->data)
                {
                    return 0;//数值已存在,不能插入
                }
                else if(data > p->data)
                {
                    if(p->rchild == NULL)//右孩子为空,插入
                    {
                        p->rchild = newnode;
                        return 1;
                    }
                    else        //继续向下找
                    {
                        p = p->rchild;
                    }
                }
                else
                {
                    if(p->lchild == NULL)//左孩子为空,插入
                    {
                        p->lchild = newnode;
                        return 1;
                    }
                    else        //继续向下找
                    {
                        p = p->lchild;
                    }
                }
            }
        }
    }
    复制代码

    删除:而结点的删除则比较麻烦,是这个结构中最难的一环,因为我们删除的结点不一定是叶子结点,是叶子结点很好办,但是如果是二叉树中的一个结点,则涉及到删除后的连接问题。

    删除一共分为以下四种情况:

    1.删除结点为叶子结点:这个就不说了,删除很简单。

    2.删除结点不是叶子结点,其左子树不为空,右子树为空:这种情况,只需将其父结点与其右孩子结点连接,然后删除,例如删除下图的40,就是连接30与35。

    3.删除结点不是叶子结点,其右子树不为空,左子树为空:这种情况,只需将其父结点与其左孩子结点连接,然后删除,例如删除下图的80,就是连接50和90

    4.删除结点不是叶子结点,左右子树都不为空,这种情况最复杂,咋们单独分析分析。

    此种情况下,总的删除思想就是:把这个结点往下挪,直到它变为叶子为止。挪移规则:即和此结点下的最大孩子的值交换,把删除该结点转换为删除孩子结点的操作。

    当然会出现这种情况,交换后此结点仍然不是叶子结点,那就继续按照挪移规则直到将改结点挪移成叶子结点。举例如图:

    首先是我自己写的一个删除算法,借用了查找函数。

    我的想法还是以前链表的删除思路,删除一个结点需要记录前一个结点,所以我就是用fa记录删除结点的父结点,然后操作的。

    所以借用的查找函数就不仅仅只是返回结点地址,也要返回父结点地址。

    复制代码
    BSTree Find(BSTree T,data_type data,BSTree *target) //查找函数,并返回父亲结点地址
    {
        if(T == NULL)//二叉树为空
        {
            *target = NULL;
            return NULL;
        }
        else if(T->data == data)//树根即为要查找的结点
        {
            *target = T;
            return NULL;
        }
        else
        {
            while(T)
            {
                if(T->lchild && T->lchild->data == data)
                {
                    *target = T->lchild;
                    return T;
                }
                if(T->rchild && T->rchild->data == data)
                {
                    *target = T->rchild;
                    return T;
                }
                if(data > T->data)
                {
                    T = T->rchild;
                }
                if(data < T->data)
                {
                    T = T->lchild;
                }
            }
            return NULL;
        }
    }
    
    int Delete1(BSTree *T,data_type data)//删除
    {
        BSTree fa,target;
        if(*T == NULL)//树为空
        {
            return 0;
        }
        fa = Find(*T,data,&target);//fa为删除结点的父结点,target为删除结点
        if(target->lchild == NULL)    //删除结点左子树为空,右子树不为空的情况(左右子树都为空的情况也适用)
        {
            if(fa == NULL && target->rchild == NULL)//树只存在根结点的情况
            {
                free(*T);
                *T = NULL;
                return 1;
            }
            if(fa->rchild == target)
            {
                fa->rchild = target->rchild;
                free(target);
                return 1;
            }
            if(fa->lchild == target)
            {
                fa->lchild = target->rchild;
                free(target);
                return 1;
            }
        }
        else if(target->rchild == NULL)//删除结点右子树为空,左子树不为空的情况
        {
            if(fa->rchild == target)
            {
                fa->rchild = target->lchild;
                free(target);
                return 1;
            }
            if(fa->lchild == target)
            {
                fa->lchild = target->lchild;
                free(target);
                return 1;
            }
        }
        else    //左右子树都不为空的情况
        {
            if(target->lchild->rchild == NULL)    //孩子结点中最大值结点为target->lchild
            {
                target->data = target->lchild->data;
                return Delete1(&(target->lchild),target->data);
            }
            else        //孩子结点中最大值结点为target->lchild->rchild.....->rchild
            {
                BSTree p1,p2;
                p2 = target->lchild;
                p1 = p2->rchild;
                while(p1->rchild != NULL)//循环找到最大值结点
                {
                    p2 = p1;
                    p1 = p1->rchild;
                }
                target->data = p1->data;
                return Delete1(&(p2->rchild),p1->data);
            }
        }
    }
    复制代码

    然后写完之后感觉自己的算法篇幅好大,貌似有点麻烦,于是在网上找了一下相关的二叉搜索树的删除算法,发现一个很精妙小巧的算法,将递归用的非常漂亮。

    当然,算法思路都是差不多的,所以效率上应该没有什么很大的差别,不过这个算法递归思想用的很赞,值得学习一下。

    建议先把上面我写的算法看明白了,在看下面的这个。

    复制代码
    //a:删除叶子结点,只要将其双亲结点链接到它的指针置空即可。
    //b:删除单支结点,只要将其后继指针链接到它所在的链接位置即可
    //c:删除双支结点,一般采用的方法是首先把它的中序前驱结点的值赋给该结点的值域,
    //然后再删除它的中序前驱结点,若它的中序前驱结点还是双支结点,继续对其做同样的操作,
    //若是叶子结点或单支结点则做对应的操作,若是根结点则结束。
    
    int Delete(BSTree *T,data_type data)
    {
        BSTree temp;
        if(data < (*T)->data)//继续在左子树中查找
        {
            return Delete(&(*T)->lchild,data);
        }
        if(data > (*T)->data)//继续在右子树中查找
        {
            return Delete(&(*T)->rchild,data);
        }
        //代码运行到此处,则找到data,即为(*T)->data
        temp = *T;//*T:删除结点地址,T:记录删除结点地址的指针,即为删除结点的父结点的左/右指针
        if((*T)->lchild == NULL)//删除结点的左子树为空,将整个右子树作为树根(此处也包含叶子结点情况)
        {
            (*T) = (*T)->rchild;
            free(temp);
            return 1;
        }
        else if((*T)->rchild == NULL)//删除结点的右子树为空,将整个左子树作为树根
        {
            (*T) = (*T)->lchild;
            free(temp);
            return 1;
        }
        else//删除结点的左右子树都不为空,找左子树的的最大值结点
        {
            if((*T)->lchild->rchild == NULL)//最大值结点为左孩子的情况
            {
                (*T)->data = (*T)->lchild->data;
                Delete(&((*T)->lchild),(*T)->data);
            }
            else        //最大值结点为最深的右孩子结点情况
            {
                BSTree p1,p2;
                p2 = (*T)->lchild;
                p1 = p2->rchild;
                while(p1->rchild != NULL)
                {
                    p2 = p1;
                    p1 = p1->rchild;
                }
                (*T)->data = p1->data;
                Delete(&(p2->rchild),p1->data);
            }
        }
    }
    复制代码

    二:二叉搜索树完整代码(C语言)

    复制代码
    #include <stdio.h>
    #include <stdlib.h>
    #include <conio.h>
    
    typedef int data_type;
    
    typedef struct bst
    {
        data_type data;
        struct bst *lchild,*rchild;
    }BSNode,*BSTree;
    
    BSTree Find(BSTree T,data_type data,BSTree *target) //查找函数,并返回父亲结点地址
    {
        if(T == NULL)//二叉树为空
        {
            *target = NULL;
            return NULL;
        }
        else if(T->data == data)//树根即为要查找的结点
        {
            *target = T;
            return NULL;
        }
        else
        {
            while(T)
            {
                if(T->lchild && T->lchild->data == data)
                {
                    *target = T->lchild;
                    return T;
                }
                if(T->rchild && T->rchild->data == data)
                {
                    *target = T->rchild;
                    return T;
                }
                if(data > T->data)
                {
                    T = T->rchild;
                }
                if(data < T->data)
                {
                    T = T->lchild;
                }
            }
            return NULL;
        }
    }
    
    int Insert(BSTree *T,data_type data)//插入数据
    {
        BSTree newnode,p;
        newnode = (BSTree)malloc(sizeof(BSNode));
        newnode->lchild = newnode->rchild = NULL;
        newnode->data = data;
        if(*T == NULL)
        {
            *T = newnode;
        }
        else
        {
            p = *T;
            while(1)
            {
                if(data == p->data)
                {
                    return 0;//数值已存在,不能插入
                }
                else if(data > p->data)
                {
                    if(p->rchild == NULL)//右孩子为空,插入
                    {
                        p->rchild = newnode;
                        return 1;
                    }
                    else        //继续向下找
                    {
                        p = p->rchild;
                    }
                }
                else
                {
                    if(p->lchild == NULL)//左孩子为空,插入
                    {
                        p->lchild = newnode;
                        return 1;
                    }
                    else        //继续向下找
                    {
                        p = p->lchild;
                    }
                }
            }
        }
    }
    
    
    int Delete1(BSTree *T,data_type data)//删除
    {
        BSTree fa,target;
        if(*T == NULL)//树为空
        {
            return 0;
        }
        fa = Find(*T,data,&target);//fa为删除结点的父结点,target为删除结点
        if(target->lchild == NULL)    //删除结点左子树为空,右子树不为空的情况(左右子树都为空的情况也适用)
        {
            if(fa == NULL && target->rchild == NULL)//树只存在根结点的情况
            {
                free(*T);
                *T = NULL;
                return 1;
            }
            if(fa->rchild == target)
            {
                fa->rchild = target->rchild;
                free(target);
                return 1;
            }
            if(fa->lchild == target)
            {
                fa->lchild = target->rchild;
                free(target);
                return 1;
            }
        }
        else if(target->rchild == NULL)//删除结点右子树为空,左子树不为空的情况
        {
            if(fa->rchild == target)
            {
                fa->rchild = target->lchild;
                free(target);
                return 1;
            }
            if(fa->lchild == target)
            {
                fa->lchild = target->lchild;
                free(target);
                return 1;
            }
        }
        else    //左右子树都不为空的情况
        {
            if(target->lchild->rchild == NULL)    //孩子结点中最大值结点为target->lchild
            {
                target->data = target->lchild->data;
                return Delete1(&(target->lchild),target->data);
            }
            else        //孩子结点中最大值结点为target->lchild->rchild.....->rchild
            {
                BSTree p1,p2;
                p2 = target->lchild;
                p1 = p2->rchild;
                while(p1->rchild != NULL)//循环找到最大值结点
                {
                    p2 = p1;
                    p1 = p1->rchild;
                }
                target->data = p1->data;
                return Delete1(&(p2->rchild),p1->data);
            }
        }
    }
    
    
    //a:删除叶子结点,只要将其双亲结点链接到它的指针置空即可。
    //b:删除单支结点,只要将其后继指针链接到它所在的链接位置即可
    //c:删除双支结点,一般采用的方法是首先把它的中序前驱结点的值赋给该结点的值域,
    //然后再删除它的中序前驱结点,若它的中序前驱结点还是双支结点,继续对其做同样的操作,
    //若是叶子结点或单支结点则做对应的操作,若是根结点则结束。
    
    int Delete(BSTree *T,data_type data)
    {
        BSTree temp;
        if(data < (*T)->data)//继续在左子树中查找
        {
            return Delete(&(*T)->lchild,data);
        }
        if(data > (*T)->data)//继续在右子树中查找
        {
            return Delete(&(*T)->rchild,data);
        }
        //代码运行到此处,则找到data,即为(*T)->data
        temp = *T;//*T:删除结点地址,T:记录删除结点地址的指针,即为删除结点的父结点的左/右指针
        if((*T)->lchild == NULL)//删除结点的左子树为空,将整个右子树作为树根(此处也包含叶子结点情况)
        {
            (*T) = (*T)->rchild;
            free(temp);
            return 1;
        }
        else if((*T)->rchild == NULL)//删除结点的右子树为空,将整个左子树作为树根
        {
            (*T) = (*T)->lchild;
            free(temp);
            return 1;
        }
        else//删除结点的左右子树都不为空,找左子树的的最大值结点
        {
            if((*T)->lchild->rchild == NULL)//最大值结点为左孩子的情况
            {
                (*T)->data = (*T)->lchild->data;
                Delete(&((*T)->lchild),(*T)->data);
            }
            else        //最大值结点为最深的右孩子结点情况
            {
                BSTree p1,p2;
                p2 = (*T)->lchild;
                p1 = p2->rchild;
                while(p1->rchild != NULL)
                {
                    p2 = p1;
                    p1 = p1->rchild;
                }
                (*T)->data = p1->data;
                Delete(&(p2->rchild),p1->data);
            }
        }
    }
    
    
    void CreateBSTree(BSTree *T)//创建二叉树,调用插入算法创建
    {
        data_type data;
        char ch;
        printf("请输入要创建的二叉搜索树的数据(数据之间用空格隔开,输入完毕按回车):");
        do
        {
            scanf("%d",&data);
            ch = getchar();
            Insert(T,data);
        }
        while (ch != 10);
    }
    
    void Inorder(BSTree T)
    {
        if(T)
        {
            Inorder(T->lchild);
            printf("%d ",T->data);
            Inorder(T->rchild);
        }
    }
    
    
    int main()
    {
        BSTree T,fa,target;
        T = NULL;
        CreateBSTree(&T);
        Inorder(T);
        int select;
        data_type data;
        while(1)
        {
            printf("1.插入  2.删除 3.中序遍历
    ");
            scanf("%d",&select);
            if(select == 1)
            {
                printf("请输入要插入的数据:");
                scanf("%d",&data);
                Insert(&T,data);
                Inorder(T);
                getch();
            }
            else if(select == 2)
            {
                printf("删除数据:");
                scanf("%d",&data);
                Delete1(&T,data);
                Inorder(T);
                getch();
            }
            else if(select == 3)
            {
                Inorder(T);
                getch();
            }
        }            
        return 0;
    }
    /* 50 30 80 20 40 90 35 85 32 88*/
    复制代码
     
    http://www.cnblogs.com/ecizep/p/4778241.html
  • 相关阅读:
    vi/vim
    Linux相关知识
    Pikachu实验环境搭建
    DVWA-XSS(Reflected)(反射型跨站脚本攻击)
    DVWA-SQL Injection(Blind)(SQL盲注)
    DVWA—File Upload(文件上传)
    DVWA—Command Injection(命令注入)
    DVWA—Command Injection(命令注入)中出现乱码
    DVWA—Brute Force(暴力破解)
    sqli-labs闯关之61-65关
  • 原文地址:https://www.cnblogs.com/softidea/p/4922336.html
Copyright © 2020-2023  润新知