• 矩阵快速幂


    矩阵乘法:

       a(n, m), b(m, p) 为两个二维矩阵 相乘可得矩阵c(n, p)  a中每一行和b中每一列相对应数的乘积之和;

    1、

      hdoj 1575--Tr A   http://acm.hdu.edu.cn/showproblem.php?pid=1575  

      A为一个矩阵 求A^K中主对角线之和 , 结果取模;

    #define mod 9973
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    using namespace std;
    struct matrix
    {
        int a[15][15];
    }; int n;
    matrix mul(matrix a, matrix b)
    {
        matrix ret;
        memset(ret.a, 0, sizeof(ret.a));
        for(int i = 0; i < n; i++)
        {
            for(int k = 0; k < n; k++)
                if(a.a[i][k])
                    for(int j = 0; j < n; j++)
                        if(b.a[k][j])
                            ret.a[i][j]=(a.a[i][k]*b.a[k][j]+ret.a[i][j])%mod;
        }
        return ret;
    }
    matrix mpower(matrix tem, int m)
    {
        matrix I;
        for(int i = 0; i < 15; i++)
            for(int j = 0; j < 15; j++)
                I.a[i][j] = (i==j);
        while(m)
        {
            if(m&1)
                I = mul(I, tem);
                m >>= 1;
            tem = mul(tem, tem);
        }
        return I;
     }
    int main()
    {
        int T;
        scanf("%d", &T);
        while(T--)
        {
            int m;
            matrix num;
            scanf("%d%d", &n, &m);
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++)
                    scanf("%d", &num.a[i][j]);
            num = mpower(num, m);
            int sum = 0;
            for(int i = 0; i < n; i++)
            {
                sum = (sum+num.a[i][i])%mod;
            }
            printf("%d
    ", sum);
        }
        return 0;
    }

    2、

      Poj 3070--Fibonacci      http://poj.org/problem?id=3070

        奇妙, 二维矩阵a{0, 1, 1, 1}^n = F(n) && (n != 0); Fib数列矩阵求法 ; {a,  b} * {0, 1, 1, 1}  = {b, a+b};  

    #include <cmath>
    #include <cstdio>
    #include <cstring>
    const int MOD = 1e4;
    struct matrix
    {
        int a[2][2];
    };
    matrix Matrixmul(matrix a, matrix b)
    {
       // int cnt = 0;
        matrix ret;
        memset(ret.a, 0, sizeof(ret.a));
        for(int i = 0; i < 2; i++)
            for(int k = 0; k < 2; k++)
            {
                    if(a.a[i][k])
                    for(int j = 0; j < 2; j++)
                    {
                        if(b.a[k][j])
                            ret.a[i][j]=(a.a[i][k]*b.a[k][j]+ret.a[i][j])%MOD;
                    }
                 /*   cnt++;
                    for(int L = 0; L < 2; L++){
                        for(int M = 0; M < 2; M++)
                            printf("%d ", ret.a[L][M]);
                        printf("
    ");
                    }
    
                    printf("%d
    
    
    ", cnt);*/
            }
            return ret;
    }
    matrix Matrixpow(matrix a, int n)
    {
        matrix I;
        for(int i = 0; i < 2; i++)
            for(int j = 0; j < 2; j++)
                I.a[i][j] = (i==j);
        while(n)
        {
            if(n&1)
                I = Matrixmul(I, a);
            n >>= 1;
            a = Matrixmul(a, a);
        }
        return I;
    }
    int main()
    {
        int n;
        while(scanf("%d", &n)!= EOF, n != -1)
        {
            if(n == 0)
                printf("0
    ");
            else
            {
                matrix num, tem;
                num.a[0][0] = 0;
                num.a[0][1] = 1;
                num.a[1][0] = 1;
                num.a[1][1] = 1;
                tem = Matrixpow(num, n);
                printf("%d
    ", tem.a[0][1]);
            }
        }
        return 0;
    }

    3、 

      Poj3233--Matrix Power Series (递推+矩阵) re++!!

      S = A + A2 + A3 + … + Ak  ;A为矩阵;

      例子:

        (1)k = 6 有: S(6) = (1 + A^3) * (A + A^2 + A^3) = (1 + A^3) * S(3)。
        (2)k = 7 有: S(7) = A + (A + A^4) * (A + A^2 + A^3) = A + (A + A^4) * S(3)。
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    using namespace std;
    int n, m, k; int MOD;
    struct mat
    {
        int  a[41][41];
    };
    mat d;
    struct
    {
        mat expo(mat a, int k)
        {
            /*if(k == 1)
                return a;*/
            mat e;
            memset(e.a, 0, sizeof(e.a));
            for(int i = 0; i < n; i++)
                e.a[i][i] = 1;
            if(k == 0)
                return e;
            while(k)
            {
                if(k&1)
                    e=mul(e, a);
                k>>=1;
                a=mul(a, a);
            }
            return e;
        }
        mat mul(mat a, mat b)
        {
            mat ret;
            memset(ret.a, 0, sizeof(ret.a));
            for(int i = 0; i < n; i++)
                for(int k = 0; k < n; k++)
                    if(a.a[i][k])
                        for(int j = 0; j < n; j++)
                            if(b.a[k][j])
                            {
                                ret.a[i][j]=a.a[i][k]*b.a[k][j]+ret.a[i][j];
                                if(ret.a[i][j]>=MOD)
                                    ret.a[i][j]%=MOD;
                            }
            return ret;
        }
    }MmM;//Matrix_muti_Modern;
    void print(mat a)
    {
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < n; j++)
                printf(j==n-1?"%d
    ":"%d ", a.a[i][j]);
        }
    }
    mat add(mat a, mat b)
    {
        mat t;
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
            {
                t.a[i][j]=a.a[i][j]+b.a[i][j];
                if(t.a[i][j] >= m)
                    t.a[i][j]%=MOD;
            }
        return t;
    }
    //(1)k = 6 有: S(6) = (1 + A^3) * (A + A^2 + A^3) = (1 + A^3) * S(3)。
    //(2)k = 7 有: S(7) = A + (A + A^4) * (A + A^2 + A^3) = A + (A + A^4) * S(3)。
    mat sum(int k)
    {
        if(k == 1)
            return d;
        if(k&1)
            return add(sum(k-1), MmM.expo(d, k));
        else
        {
            mat s=sum(k>>1);
            return add(s, MmM.mul(s, MmM.expo(d, k>>1))); 
            //S(n>>1)+S(n>>1)*A^(n>>1)=S(n>>1)(1+A^(n>>1)&&S(n>>1)=(A1+...+A(n>>1)); 
        }
    }
    int main()
    {
        mat tem;
        while(scanf("%d%d%d", &n, &k, &m) != EOF)
        {
            MOD = m;
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++)
                {
                    scanf("%d", &d.a[i][j]);
                    if(d.a[i][j] >= MOD)
                        d.a[i][j]%=MOD;
                }
            tem = sum(k);
            print(tem);
        }
        return 0;
    }

    4、

      Poj3735--Training little cats

      n, m, k; Ai(i =1,2, 3)代表操作; n只猫, k条操作, 重复m次;  主要是构造矩阵;

      A1 a (a食物数+1);  A2 a, b(a食物给b); A3 a(吃完所有);

      构造矩阵Mat(0--n, 0--n);  A1时Mat[0][a]+1; A2时交换a, b列; A3时a列置0

      题解:http://www.cppblog.com/y346491470/articles/157284.html 

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #define LL long long
    using namespace std;
    struct mat
    {
        LL a[101][101];
    };
    int n, m, k;
    mat matinit(mat a)
    {
        memset(a.a, 0, sizeof(a.a));
        for(int i = 0; i <= n; i++)
            a.a[i][i] = 1;
        return a;
    }
    mat matmul(mat a, mat b)
    {
        mat res;
        memset(res.a, 0, sizeof(res.a));
        for(int i = 0; i <= n; i++)
            for(int k = 0; k <= n; k++)
                if(a.a[i][k])
                    for(int j = 0; j <= n; j++)
                        if(b.a[k][j])
                            res.a[i][j] += a.a[i][k]*b.a[k][j];
        return res;
    }
    mat matpow(mat a, int k)
    {
        mat I;
        memset(I.a, 0, sizeof(I.a));
        for(int i = 0; i <= n; i++)
            I.a[i][i] = 1;
       /* if(k == 0)
            return I; */
        while(k)
        {
            if(k&1)
                I=matmul(I, a);
            k>>=1;
            a=matmul(a, a);
        }
        return I;
    }
    int main()
    {
        while(scanf("%d%d%d", &n, &m, &k) != EOF ,n ,m, k)
        {
            mat ret, num;
            char str[2];  int a, b;
            num = matinit(num);
            /*for(int i = 0; i <= n; i++)
                for(int j = 0; j <= n; j++)
                    printf("%d
    ", num.a[i][j]);*/
            for(int i = 0; i < k; i++)
            {
                cin >> str;
                if(str[0] == 'g')
                {
                    scanf("%d", &a);
                    num.a[0][a] +=1;
                }
                if(str[0] == 'e')
                {
                    scanf("%d", &a);
                    for(int i = 0; i <= n; i++)
                        num.a[i][a] = 0;
                }
                if(str[0] == 's')
                {
                    scanf("%d%d", &a, &b);
                    for(int i = 0; i <= n; i++)
                    {
                        LL temp = num.a[i][a];
                        num.a[i][a] = num.a[i][b];
                        num.a[i][b] = temp;
                    }
                }
            }
            ret = matpow(num, m);
            for(int i = 1; i <= n; i++)
                printf(i==n?"%lld
    ":"%lld ", ret.a[0][i]);
        }
        return 0;
    }

    5、

      Poj 3150 有点神,

  • 相关阅读:
    zabbix监控nginx的性能
    常用iptables命令
    shell脚本小示例
    打印菜单脚本
    ping主机脚本
    Linux网络配置脚本
    多磁盘自动分区自动挂载脚本
    深入js系列-类型(null)
    深入js系列-类型(开篇)
    first-child、last-child误解
  • 原文地址:https://www.cnblogs.com/soTired/p/5109168.html
Copyright © 2020-2023  润新知