• hadoop2.2使用手册2:如何运行自带wordcount


    问题导读:
    1.hadoop2.x自带wordcount在什么位置?
    2.运行wordcount程序,需要做哪些准备?





    此篇是在
    hadoop2完全分布式最新高可靠安装文档

    hadoop2.X使用手册1:通过web端口查看主节点、slave1节点及集群运行状态

    基础上对hadoop2.2的进一步认识。这里交给大家如何运行hadoop2.2自带例子

    1.找到examples例子
    我们需要找打这个例子的位置:首先需要找到你的hadoop文件夹,然后依照下面路径:
    /hadoop/share/hadoop/mapreduce会看到如下图:

    1. hadoop-mapreduce-examples-2.2.0.jar
    复制代码



    <ignore_js_op> 

    第二步:
    我们需要需要做一下运行需要的工作,比如输入输出路径,上传什么文件等。
    1.先在HDFS创建几个数据目录:

    1. hadoop fs -mkdir -p /data/wordcount
    2. hadoop fs -mkdir -p /output/
    复制代码

    <ignore_js_op> 

    2.目录/data/wordcount用来存放Hadoop自带的WordCount例子的数据文件,运行这个MapReduce任务的结果输出到/output/wordcount目录中。
    首先新建文件inputWord:

    1. vi /usr/inputWord
    复制代码

    新建完毕,查看内容:

    1. cat /usr/inputWord
    复制代码



    <ignore_js_op> 

    将本地文件上传到HDFS中:

    1. hadoop fs -put /usr/inputWord /data/wordcount/
    复制代码

    可以查看上传后的文件情况,执行如下命令:

    1. hadoop fs -ls /data/wordcount
    复制代码

    可以看到上传到HDFS中的文件。
    <ignore_js_op> 


    通过命令

    1. hadoop fs -text /data/wordcount/inputWord
    复制代码

    看到如下内容:
    <ignore_js_op> 


    下面,运行WordCount例子,执行如下命令:

    1. hadoop jar /usr/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /data/wordcount /output/wordcount
    复制代码

    <ignore_js_op> 
    可以看到控制台输出程序运行的信息:

    aboutyun@master:~$ hadoop jar /usr/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /data/wordcount /output/wordcount
    14/05/14 10:33:33 INFO client.RMProxy: Connecting to ResourceManager at master/172.16.77.15:8032
    14/05/14 10:33:34 INFO input.FileInputFormat: Total input paths to process : 1
    14/05/14 10:33:34 INFO mapreduce.JobSubmitter: number of splits:1
    14/05/14 10:33:34 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
    14/05/14 10:33:34 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
    14/05/14 10:33:34 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
    14/05/14 10:33:34 INFO Configuration.deprecation: mapreduce.combine.class is deprecated. Instead, use mapreduce.job.combine.class
    14/05/14 10:33:34 INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
    14/05/14 10:33:34 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
    14/05/14 10:33:34 INFO Configuration.deprecation: mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
    14/05/14 10:33:34 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
    14/05/14 10:33:34 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
    14/05/14 10:33:34 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
    14/05/14 10:33:34 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
    14/05/14 10:33:34 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
    14/05/14 10:33:35 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1400084979891_0004
    14/05/14 10:33:36 INFO impl.YarnClientImpl: Submitted application application_1400084979891_0004 to ResourceManager at master/172.16.77.15:8032
    14/05/14 10:33:36 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1400084979891_0004/
    14/05/14 10:33:36 INFO mapreduce.Job: Running job: job_1400084979891_0004
    14/05/14 10:33:45 INFO mapreduce.Job: Job job_1400084979891_0004 running in uber mode : false
    14/05/14 10:33:45 INFO mapreduce.Job:  map 0% reduce 0%
    14/05/14 10:34:10 INFO mapreduce.Job:  map 100% reduce 0%
    14/05/14 10:34:19 INFO mapreduce.Job:  map 100% reduce 100%
    14/05/14 10:34:19 INFO mapreduce.Job: Job job_1400084979891_0004 completed successfully
    14/05/14 10:34:20 INFO mapreduce.Job: Counters: 43
            File System Counters
                    FILE: Number of bytes read=81
                    FILE: Number of bytes written=158693
                    FILE: Number of read operations=0
                    FILE: Number of large read operations=0
                    FILE: Number of write operations=0
                    HDFS: Number of bytes read=175
                    HDFS: Number of bytes written=51
                    HDFS: Number of read operations=6
                    HDFS: Number of large read operations=0
                    HDFS: Number of write operations=2
            Job Counters 
                    Launched map tasks=1
                    Launched reduce tasks=1
                    Data-local map tasks=1
                    Total time spent by all maps in occupied slots (ms)=23099
                    Total time spent by all reduces in occupied slots (ms)=6768
            Map-Reduce Framework
                    Map input records=5
                    Map output records=10
                    Map output bytes=106
                    Map output materialized bytes=81
                    Input split bytes=108
                    Combine input records=10
                    Combine output records=6
                    Reduce input groups=6
                    Reduce shuffle bytes=81
                    Reduce input records=6
                    Reduce output records=6
                    Spilled Records=12
                    Shuffled Maps =1
                    Failed Shuffles=0
                    Merged Map outputs=1
                    GC time elapsed (ms)=377
                    CPU time spent (ms)=11190
                    Physical memory (bytes) snapshot=284524544
                    Virtual memory (bytes) snapshot=2000748544
                    Total committed heap usage (bytes)=136450048
            Shuffle Errors
                    BAD_ID=0
                    CONNECTION=0
                    IO_ERROR=0
                    WRONG_LENGTH=0
                    WRONG_MAP=0
                    WRONG_REDUCE=0
            File Input Format Counters 
                    Bytes Read=67
            File Output Format Counters 
                    Bytes Written=51



    查看结果,执行如下命令:

    1. hadoop fs -text /output/wordcount/part-r-00000
    复制代码


    结果数据示例如下:

    1. aboutyun@master:~$ hadoop fs -text /output/wordcount/part-r-00000
    2. aboutyun        2
    3. first        1
    4. hello        3
    5. master        1
    6. slave        2
    7. what        1
    复制代码



    <ignore_js_op> 
    登录到Web控制台,访问链接http://master:8088/可以看到任务记录情况。

    下一篇:hadoop2.2运行mapreduce(wordcount)问题总结

  • 相关阅读:
    Emiller's Advanced Topics In Nginx Module Development
    关于使用UDP(TCP)跨局域网,NAT穿透的心得
    linux pipe
    使用Trinity拼接以及分析差异表达一个小例子
    Bowtie2的安装与使用
    使用Tophat+cufflinks分析差异表达
    RNA-seq流程需要进化啦!
    HISAT2+StringTie+Ballgown安装及使用流程
    HISAT2,StringTie,Ballgown处理转录组数据
    p值还是 FDR ?
  • 原文地址:https://www.cnblogs.com/snowbook/p/5681130.html
Copyright © 2020-2023  润新知