spoj gss系列=最大字段和套餐
gss1就是gss3的无单点修改版
有区间查询和单点修改,考虑用线段树维护
我们要维护区间权值和(s),区间最大前缀和(xl)和最大后缀和(xr),以及最大子段和(x)
在pushup的时候,这样维护 代码里有
[a[o].s=a[lc].s+a[rc].s$$$$a[o].xl=max(a[lc].xl,a[lc].s+a[rc].xl)$$$$a[o].xr=max(a[rc].xr,a[lc].xr+a[rc].s)$$$$a[o].x=max(max(a[lc].x,a[rc].x),a[lc].xr+a[rc].xl)
]
其实是懒得写文字
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define lc (o<<1)
#define rc ((o<<1)|1)
#define mid ((l+r)>>1)
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N=50000+10,inf=999999999;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct sgmt
{
LL s,xl,xr,x;
}a[N<<2];
il void psup(int o)
{
a[o].s=a[lc].s+a[rc].s;
a[o].xl=max(a[lc].xl,a[lc].s+a[rc].xl);
a[o].xr=max(a[rc].xr,a[lc].xr+a[rc].s);
a[o].x=max(max(a[lc].x,a[rc].x),a[lc].xr+a[rc].xl);
}
il void bui(int o,int l,int r)
{
if(l==r) {a[o].s=a[o].xl=a[o].xr=a[o].x=rd();return;}
bui(lc,l,mid),bui(rc,mid+1,r);
psup(o);
}
il void modi(int o,int l,int r,int x,int y)
{
if(l==r) {a[o].s=a[o].xl=a[o].xr=a[o].x=y;return;}
if(x<=mid) modi(lc,l,mid,x,y);
else modi(rc,mid+1,r,x,y);
psup(o);
}
il sgmt quer(int o,int l,int r,int ll,int rr)
{
if(ll<=l&&r<=rr) return a[o];
if(rr<=mid) return quer(lc,l,mid,ll,rr);
else if(ll>mid) return quer(rc,mid+1,r,ll,rr);
else
{
sgmt an,aa,bb;
aa=quer(lc,l,mid,ll,mid),bb=quer(rc,mid+1,r,mid+1,rr);
an.s=aa.s+bb.s;
an.xl=max(aa.xl,aa.s+bb.xl);
an.xr=max(bb.xr,aa.xr+bb.s);
an.x=max(max(aa.x,bb.x),aa.xr+bb.xl);
return an;
}
}
int n,m;
int main()
{
n=rd();
bui(1,1,n);
m=rd();
while(m--)
{
int op=rd(),x=rd(),y=rd();
if(op==0) modi(1,1,n,x,y);
else printf("%lld
",quer(1,1,n,x,y).x);
}
return 0;
}