• CF1097D Makoto and a Blackboard


    cf

    luogu

    一个数变到它的任意一个因数概率都是相同的,不过因为一个数可以拆成(prod_{i=1}^{k}{p_i}^{b_i}),并且(p^b)变到(p^0,p^1...p^b)的概率都是(frac{1}{b+1}),所以一个数变到它的一个因数(x)的概率就可以先算各个质因子次数变到(x)质因子次数概率,然后乘起来.用这样的推到,可以知道这个期望可以拆成只考虑某种质因子({p_i}^{b_i})值的期望的乘积

    所以可以暴力dp,如果现在考虑的是(p_i)(f_{j,k})表示第(j)轮,现在数是({p_i}^k)的概率,然后直接(sum)概率(*)权值得到期望,总复杂度(O(sqrt{n}+klog^2n))

    #include<bits/stdc++.h>
    #define LL long long
    #define uLL unsigned long long
    #define db double
    
    using namespace std;
    const int mod=1e9+7;
    LL rd()
    {
        LL x=0,w=1;char ch=0;
        while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
        while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
        return x*w;
    }
    LL n,prm[15];
    int kk,cn[15],tt,ans=1,f[2][55],inv[55];
    
    int main()
    {
        ////////////
    	inv[0]=inv[1]=1;
    	for(int i=2;i<=50;++i) inv[i]=(mod-1ll*mod/i*inv[mod%i]%mod)%mod;
    	n=rd(),kk=rd();
    	int sqt=sqrt(n);
    	for(int i=2;n>1&&i<=sqt;++i)
    		if(n%i==0)
    		{
    			prm[++tt]=i;
    			while(n%i==0) ++cn[tt],n/=i;
    		}
    	if(n>1) prm[++tt]=n,cn[tt]=1;
    	for(int i=1;i<=tt;++i)
    	{
    		int nw=1,la=0;
    		f[la][cn[i]]=1;
    		for(int j=1;j<=kk;++j)
    		{
    			for(int k=cn[i];~k;--k)
    			{
    				if(!f[la][k]) continue;
    				for(int l=k;~l;--l)
    					f[nw][l]=(f[nw][l]+1ll*f[la][k]*inv[k+1]%mod)%mod;
    				f[la][k]=0;
    			}
    			nw^=1,la^=1;
    		}
    		int sm=0;
    		LL a=1;
    		for(int j=0;j<=cn[i];++j,a*=prm[i])
    			sm=(sm+a%mod*f[la][j]%mod)%mod;
    		ans=1ll*ans*sm%mod;
    		memset(f[la],0,sizeof(f[la]));
    	}
    	printf("%d
    ",ans);
        return 0;
    }
    
  • 相关阅读:
    Markdown 语法说明 (简体中文版)
    Markdown Reference
    BZOJ 2229 最小割
    BZOJ 3569 DZY Loves Chinese II
    BZOJ 3563 DZY Loves Chinese
    BZOJ 2956 模积和
    BZOJ 2957 楼房重建
    查漏补缺:面向对象设计原则
    添砖加瓦:设计模式(简单工厂模式)
    添砖加瓦:设计模式(总述)
  • 原文地址:https://www.cnblogs.com/smyjr/p/11569557.html
Copyright © 2020-2023  润新知