• luogu P3172 [CQOI2015]选数


    传送门

    了一小时柿子orz

    首先题目要求的是$$sum_{x_1=l}{r}sum_{x_2=l}{r}...sum_{x_n=l}^{r}[gcd(x_1,x_2...x_n)=k]$$

    显然可以除掉一个k,设(x=lceilfrac{l}{k} ceil,y=lfloorfrac{l}{k} floor)即$$sum_{x_1=x}{y}sum_{x_2=x}{y}...sum_{x_n=x}^{y}[gcd(x_1,x_2...x_n)=1]$$

    可以联系两个数的情况,也就是$$egin{matrix} sum_{i=1}{n}sum_{j=1}{m}[gcd(i,j)=1] &= sum_{i=1}{n}sum_{j=1}{m}sum_{d|i,d|j}mu(d) &=sum_{d=1}^{min(n,m)}mu(d)lfloorfrac{n}{d} floorlfloorfrac{m}{d} floor end{matrix}$$

    这里有n个数也是类似的,即$$sum_{d=1}{y}mu(d)(lfloorfrac{y}{d} floor-lfloorfrac{x-1}{d} floor)n$$

    注意后半部分,我们要求的是区间([x,y])的d的倍数个数,也就是两个前缀和的差

    然后数论分块即可.注意数据范围,(mu)的前缀和要用杜教筛求

    #include<bits/stdc++.h>
    #define LL long long
    #define db double
    #define il inline
    #define re register
    
    using namespace std;
    const int N=1e6+10,mod=1e9+7;
    il int rd()
    {
        int x=0,w=1;char ch=0;
        while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
        while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
        return x*w;
    }
    il int fpow(int a,int b){int an=1;while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;} return an;}
    int n,kk,l,r;
    int prm[N],mu[N],mu2[N],pp[N],tt,ans;
    bool v[N];
    il int gmu(int x)
    {
    	if(x<=N-10) return mu[x];
    	if(v[x/10000]) return mu2[x/10000];
    	v[x/10000]=1;
    	LL an=1;
    	for(int i=2,j;i<=x;i=j+1)
    	{
    		j=(x/(x/i));
    		an-=1ll*gmu(x/i)*(j-i+1);
    	}
    	return mu2[x/10000]=an;
    }
    
    int main()
    {
    	n=rd(),kk=rd(),l=rd(),r=rd();
    	l=(l+kk-1)/kk-1,r/=kk;
    	mu[1]=1;
    	for(int i=2;i<=N-10;++i)
    	{
    		if(!pp[i]) pp[i]=1,mu[i]=-1,prm[++tt]=i;
    		for(int j=1;j<=tt&&i*prm[j]<=N-10;++j)
    		{
    			pp[i*prm[j]]=1,mu[i*prm[j]]=-mu[i];
    			if(i%prm[j]==0) {mu[i*prm[j]]=0;break;}
    		}
    	}
    	for(int i=2;i<=N-10;++i) mu[i]+=mu[i-1];
    	for(int i=1,j=1;i<=r;++j,i=j)
    	{
    		j=min(l>=i?l/(l/i):(int)1e9,r/(r/i));
    		ans=((ans+1ll*(gmu(j)-gmu(i-1))*fpow(r/i-l/i,n)%mod)%mod+mod)%mod;
    	}
    	printf("%d
    ",ans);
        return 0;
    }
    
  • 相关阅读:
    Spring Boot快速搭建Spring框架
    JVM内存管理机制
    开发者应该掌握的Java代码优化技能
    23种设计模式(8)-外观模式
    1823:【00NOIP提高组】方格取数
    【00NOIP提高组】单词接龙
    1821:【00NOIP提高组】乘积最大
    1820:【00NOIP提高组】进制转换
    时间复杂度比较
    hhhhh我想起来我的账号了
  • 原文地址:https://www.cnblogs.com/smyjr/p/10399463.html
Copyright © 2020-2023  润新知