• 最短路+dijkstra


    http://acm.hust.edu.cn/vjudge/contest/128352#problem/F

    未ac代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <cmath>
    #include <vector>
    #include <queue>
    #include <stack>
    #include <map>
    #include <algorithm>
    #include <set>
    using namespace std;
    typedef long long ll;
    typedef unsigned long long Ull;
    #define MM(a,b) memset(a,b,sizeof(a));
    #define CT continue
    #define PF printf
    const double eps = 1e-10;
    const int inf = 0x3f3f3f3f;
    const double pi=acos(-1);
    const int maxn=1e6+10;
    
    double dist[3][1005];
    struct Point {
       double x,y,dis;
       void read()
       {
           scanf("%lf%lf",&x,&y);
       }
    }p[1005];
    
    double w;
    int n,vis[1005];
    
    struct edge{
       int v;
       double l;
    };
    vector<edge> G[1005];
    
    double dis(Point a)
    {
        return sqrt(a.x*a.x+a.y*a.y);
    }
    
    Point operator-(Point a,Point b)
    {
       return (Point){a.x-b.x,a.y-b.y};
    }
    
    void add_edge(int i,int j,double l)
    {
        G[i].push_back((edge){j,l});
        G[j].push_back((edge){i,l});
    }
    
    struct node{
       int v;
       double dis;
       bool operator<(const node &a) const{
          return this->dis>a.dis;
       }
    };
    priority_queue<node> q;
    
    void dis_road(int k,int s,int t)
    {
          MM(vis,0);
          for(int i=0;i<=n+1;i++) dist[k][i]=1e12;
          dist[k][s]=0;
          while(q.size()) q.pop();
          q.push((node){s,0});
    
          while(q.size())
          {
              node cur=q.top();q.pop();
              int u=cur.v;
              if(dist[k][u]<cur.dis) CT;
              for(int i=0;i<G[u].size();i++)
              {
                  int v=G[u][i].v;
                  if(dist[k][v]>max(dist[k][u],G[u][i].l))
                  {
                      dist[k][v]=max(dist[k][u],G[u][i].l);
                      q.push((node){v,dist[k][v]});
                  }
              }
          }
    }
    
    int main()
    {
       freopen("froggy.in","r",stdin);
        freopen("froggy.out","w",stdout);
        while(~scanf("%lf%d",&w,&n))
        {
            for(int i=1;i<=n;i++) p[i].read();
            for(int i=0;i<=n+1;i++) G[i].clear();
    
            for(int i=1;i<=n;i++)
               for(int j=i+1;j<=n;j++)
               {
                  double l=dis(p[j]-p[i]);
                  add_edge(i,j,l);
               }
            for(int i=1;i<=n;i++)
            {
                add_edge(0,i,p[i].x);
                add_edge(n+1,i,w-p[i].x);
            }
    
            dis_road(0,0,n+1);
            dis_road(1,n+1,0);
    
            double res=w;
    
            Point a=(Point){w/2,0};
            for(int i=1;i<=n;i++)
              for(int j=1;j<=n;j++)
             if(i!=j)
              {
                   double tmp=dis(p[i]-p[j]);
                   if(tmp/2<res)
                   {
                       if(dist[0][i]<res&&dist[1][j]<res)
                       {
                           res=max(tmp/2,max(dist[0][i],dist[1][j]));
                           a.x=(p[i].x+p[j].x)/2;
                           a.y=(p[i].y+p[j].y)/2;
                       }
                   }
              }
    
            for(int i=1;i<=n;i++)
            {
                double l=p[i].x,r=w-p[i].x;
                if(l<r)
                {
                    if(res>max(r/2,dist[0][i]))
                    {
                        res=max(r/2,dist[0][i]);
                        a.x=(p[i].x+w)/2;
                        a.y=p[i].y;
                    }
                }
                else
                {
                    if(res>max(l/2,dist[1][i]))
                    {
                        res=max(l/2,dist[1][i]);
                        a.x=p[i].x/2;
                        a.y=p[i].y;
                    }
                }
            }
    
            printf("%.9f %.9f
    ",a.x,a.y);
        }
        fclose(stdin);
        fclose(stdout);
        return 0;
    }
    

      AC代码:

    #include <iostream>
    #include <cstdio>
    #include <vector>
    #include <cmath>
    #include <iomanip>
    
    #define inf 1e10
    #define maxn 1010
    
    using namespace std;
    
    int n, w;
    bool ok;
    double backw[maxn], forw[maxn], x[maxn], y[maxn], bestAns = inf, solx, soly;
    
    double dist(int i, int j) {
        return sqrt((x[i] - x[j])*(x[i] - x[j]) + (y[i] - y[j])*(y[i] - y[j]));
    }
    
    void dijkstra(double d[]) {
        vector<bool> viz(maxn, false);
        for (int i = 1; i <= n; ++i) {
            int minj = -1;
            for (int j = 1; j <= n; ++j) {
                if (!viz[j] && (minj == -1 || d[j] < d[minj])) {
                    minj = j;
                }
            }
    
            viz[minj] = true;
    
            for (int j = 1; j <= n; ++j) {
                d[j] = min(d[j], max(d[minj], dist(minj, j)));
            }
        }
    }
    
    void update(int i, int j) {
        double ans = max(dist(i, j)/2, max(backw[i], forw[j]));
        if (ans < bestAns) {
            bestAns = ans;
            solx = (x[i] + x[j])/2;
            soly = (y[i] + y[j])/2;
        }
    }
    
    int main()
    {
        //freopen("test.in", "r", stdin);
        freopen("froggy.in", "r", stdin);
        freopen("froggy.out", "w", stdout);
        cin >> w >> n;
    
        for (int i = 1; i <= n; ++i) {
            cin >> x[i] >> y[i];
        }
    
        for (int i = 1; i <= n; ++i) {
            backw[i] = x[i];
        }
        dijkstra(backw);
    
        for (int i = 1; i <= n; ++i) {
            forw[i] = w - x[i];
        }
        dijkstra(forw);
    
        for (int i = 1; i <= n; ++i) {
            backw[0] = 0;
            x[0] = 0;
            y[0] = y[i];
            update(0, i);
    
            forw[0] = 0;
            x[0] = w;
            y[0] = y[i];
            update(i, 0);
        }
    
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= n; ++j) {
                update(i, j);
            }
        }
    
        cout << fixed << setprecision(9) << solx << " " << soly;
    }
    

      

  • 相关阅读:
    Oracle并行操作——从串行到并行
    Log4Net使用指南
    NET开发人员应该要知道
    测试11g压缩性能
    C#不同操作系统下,界面大小不一的原因
    采用nettcp绑定的wcf宿主到iis7
    Packaging Oracle Data Access Components into .Net projects
    Operating System Property Values
    【转】《Effective C#中文版:改善C#程序的50种方法》读书笔记
    解决.svc 无法解析
  • 原文地址:https://www.cnblogs.com/smilesundream/p/5775437.html
Copyright © 2020-2023  润新知