• hdu 5533 正n边形判断 精度处理


    Dancing Stars on Me

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 1098    Accepted Submission(s): 598


    Problem Description
    The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

    Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.
     
    Input
    The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following n lines, each contains 2 integers xi,yi, describe the coordinates of n stars.

    1T300
    3n100
    10000xi,yi10000
    All coordinates are distinct.
     
    Output
    For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
     
    Sample Input
    3 3 0 0 1 1 1 0 4 0 0 0 1 1 0 1 1 5 0 0 0 1 0 2 2 2 2 0
     
    Sample Output
    NO YES NO
     
    Source
     
    Recommend
    hujie   |   We have carefully selected several similar problems for you:  5830 5829 5828 5827 5826 
    题意:给你n个点(-1e4<x,y<=1e4),判断这n个点能否组成一个正n边形;
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <cmath>
    #include <vector>
    #include <queue>
    #include <map>
    #include <algorithm>
    #include <set>
    #define MM(a) memset(a,0,sizeof(a))
    typedef long long ll;
    typedef unsigned long long ULL;
    const double eps = 1e-12;
    const int inf = 0x3f3f3f3f;
    const double pi=acos(-1);
    using namespace std;
    
    struct Point{
        int x,y;
        void read()
        {
            scanf("%d%d",&x,&y);
        }
    }p[105],tubao[105];
    
    int dcmp(double a)
    {
        if(fabs(a)<eps) return 0;
        else if(a>0) return 1;
        else return -1;
    }
    
    Point operator-(Point a,Point b)
    {
        return (Point){a.x-b.x,a.y-b.y};
    }
    
    double dis(Point a)
    {
        return sqrt(a.x*a.x+a.y*a.y);
    }
    
    double cross(Point a,Point b)
    {
        return  a.x*b.y-b.x*a.y;
    }
    
    double dot(Point a,Point b)
    {
        return a.x*b.x+a.y*b.y;
    }
    
    bool cmp(Point a,Point b)
    {
        if(a.x!=b.x) return a.x<b.x;
        else return a.y<b.y;
    }
    
    int  convex_hull(Point *p,int n,Point *tubao)
    {
        sort(p+1,p+n+1,cmp);
        int m=0;
        for(int i=1;i<=n;i++)
        {
            while(m>=2&&cross(p[i]-tubao[m-1],tubao[m]-tubao[m-1])>0) m--;
            tubao[++m]=p[i];
        }
        int k=m;
        for(int i=n-1;i>=1;i--)
        {
            while(m-k>=1&&cross(p[i]-tubao[m-1],tubao[m]-tubao[m-1])>0) m--;
            tubao[++m]=p[i];
        }
        m--;
        return m;
    }
    
    int main()
    {
        int cas,n;
        scanf("%d",&cas);
        while(cas--)
        {
            scanf("%d",&n);
            for(int i=1;i<=n;i++) p[i].read();
            int k=convex_hull(p,n,tubao);
            tubao[k+1]=tubao[1];
    
            bool flag=true;
            double tmp=(n-2.0)*pi/n;
    
            for(int i=1;i<=k-1;i++)
            {
                Point a=tubao[i+1]-tubao[i],b=tubao[i+2]-tubao[i+1];
                double cosang=dot(a,b)/(dis(a)*dis(b));
                double ang=acos(cosang);
                ang=pi-ang;
                if(dcmp(ang-tmp)!=0) {flag=false;break;}
            }
            if(flag) printf("YES
    ");
            else printf("NO
    ");
        }
        return 0;
    }
    

      分析:主要是借助这道题来分下下计算几何的精度问题,

    double型数据精度处理的两种方式

    1.相除改为ong long相乘,这种是肯定对的,不会错。

    2.dcmp函数,这种比较简单,但是有一定的精度条件,如果角度是1/999999-1/1000000,那么相减起来就是1e-6*1/999999为1e-12级别,这样是可以使用dcmp的,比如本道题,因为1-e4<=x<=1e4,那么最小的角度差是1/(2*1e4-1)-1/2*1e4(最小的角是1/2*1e4,第二小的角度是1/(2*1e4-1))为1e-8级别>1e-12级别,所以可以用dcmp(eps<1e-12)

     
  • 相关阅读:
    洛谷 P1591 阶乘数码
    洛谷 P2008 大朋友的数字
    洛谷 P1716 双调序列
    洛谷 P2309 loidc,卖卖萌
    洛谷 P1324 矩形分割
    洛谷 P2690 接苹果
    洛谷 P1239 计数器
    hdu_4352_XHXJ's LIS(数位DP+状态压缩)
    hdu_5648_DZY Loves Math
    hdu_5179_beautiful number(数位DP)
  • 原文地址:https://www.cnblogs.com/smilesundream/p/5768914.html
Copyright © 2020-2023  润新知