• hdu 5726 GCD GCD+线段树+区间预处理+map


    GCD

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2530    Accepted Submission(s): 895


    Problem Description
    Give you a sequence of N(N100,000) integers : a1,...,an(0<ai1000,000,000). There are Q(Q100,000) queries. For each query l,r you have to calculate gcd(al,,al+1,...,ar) and count the number of pairs(l,r)(1l<rN)such that gcd(al,al+1,...,ar) equal gcd(al,al+1,...,ar).
     
    Input
    The first line of input contains a number T, which stands for the number of test cases you need to solve.

    The first line of each case contains a number N, denoting the number of integers.

    The second line contains N integers, a1,...,an(0<ai1000,000,000).

    The third line contains a number Q, denoting the number of queries.

    For the next Q lines, i-th line contains two number , stand for the li,ri, stand for the i-th queries.
     
    Output
    For each case, you need to output “Case #:t” at the beginning.(with quotes, t means the number of the test case, begin from 1).

    For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs(l,r) such that gcd(al,al+1,...,ar) equal gcd(al,al+1,...,ar).
     
    Sample Input
    1 5 1 2 4 6 7 4 1 5 2 4 3 4 4 4
     
    Sample Output
    Case #1: 1 8 2 4 2 4 6 1
     
    Author
    HIT
     
    Source
     题意:给你n个数字组成的序列(n<=1e5),接下来q(<=1e5)个询问,每个询问包括一个区间[l,r]。求该区间内数字的GCD,以及整个[1,n]区间上有多少个子区间GCD等于该区间GCD;
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <map>
    #include <vector>
    #include <queue>
    #include <cstring>
    #include <string>
    #include <algorithm>
    using namespace std;
    typedef  long long  ll;
    typedef unsigned long long ull;
    #define MM(a,b) memset(a,b,sizeof(a));
    #define inf 0x7f7f7f7f
    #define FOR(i,n) for(int i=1;i<=n;i++)
    #define CT continue;
    #define PF printf
    #define SC scanf
    const int mod=1000000007;
    const int N=3*1e5+10;
    
    int n,a[N],l[N],r[N];
    
    struct node{
       int l,r;
       ll sum,lazy;
       int gcdn;
       void fun(ll v){
           this->lazy+=v;
           sum+=v*(r-l+1);
       }
       int mid(){
           return (l+r)>>1;
       }
    }tree[4*N],tree2[4*N];
    
    int gcd(int a,int b)
    {
        if(b==0) return a;
        else return gcd(b,a%b);
    }
    
    void build(int k,int l,int r)
    {
       tree[k].l=l;tree[k].r=r;
       if(l==r)
        {
            tree[k].gcdn=a[l];
            return;
        }
       int mid=(l+r)>>1;
       build(2*k,l,mid);
       build(2*k+1,mid+1,r);
       tree[k].gcdn=gcd(tree[2*k].gcdn,tree[2*k+1].gcdn);
    }
    
    ll query(int k,int l,int r)
    {
        if(l<=tree[k].l&&tree[k].r<=r) return tree[k].gcdn;
        else {
            int mid=tree[k].mid();
            int gcdk=0;
            if(l<=mid) gcdk=query(2*k,l,r);
            if(r>mid)  gcdk=gcdk==0?query(2*k+1,l,r):gcd(gcdk,query(2*k+1,l,r));
            return gcdk;
        }
    }
    
    map<int,ll> tmp,tmpnext,ans;
    map<int,ll>::iterator it;
    
    void init()
    {
        tmp.clear();ans.clear();
        for(int i=1;i<=n;i++)
        {
            tmpnext.clear();
            tmpnext[a[i]]++;
            for(it=tmp.begin();it!=tmp.end();++it)
            {
                int k=gcd(a[i],it->first);
                tmpnext[k]+=it->second;
            }
            for(it=tmpnext.begin();it!=tmpnext.end();it++)
                    ans[it->first]+=it->second;
            tmp=tmpnext;
        }
    }
    
    int main()
    {
        int cas,q,kk=0;
        scanf("%d",&cas);
        while(cas--)
        {
            scanf("%d",&n);
            for(int i=1;i<=n;i++) scanf("%d",&a[i]);
            build(1,1,n);
            init();
            scanf("%d",&q);
            for(int i=1;i<=q;i++)   scanf("%d%d",&l[i],&r[i]);
            printf("Case #%d:
    ",++kk);
            for(int i=1;i<=q;i++)
            {
                int k=query(1,l[i],r[i]);
                printf("%d %lld
    ",k,ans[k]);
            }
        }
        return 0;
    }
    

    题解链接:  

    我们注意观察gcd(a_{l},a_{l+1},...,a_{r})gcd(al​​,al+1​​,...,ar​​),当l固定不动的时候,r=l...nr=l...n时,我们可以容易的发现,随着rr的増大,gcd(a_{l},a_{l+1},...,a_{r})gcd(al​​,al+1​​,...,ar​​)是递减的,同时gcd(a_{l},a_{l+1},...,a_{r})gcd(al​​,al+1​​,...,ar​​)最多 有log 1000,000,000log 1000,000,000个不同的值,为什么呢?因为a_{l}al​​最多也就有log 1000,000,000log 1000,000,000个质因数

     

    所以我们可以在log级别的时间处理出所有的以L开头的左区间的gcd(a_{l},a_{l+1},...,a_{r})gcd(al​​,al+1​​,...,ar​​

    那么我们就可以在n log 1000,000,000n log 1000,000,000的时间内预处理出所有的gcd(a_{l},a_{l+1},...,a_{r})gcd(al​​,al+1​​,...,ar​​)

    然后我们可以用一个map来记录,gcd值为key的有多少个 然后我们就可以对于每个询问只需要查询

    对应gcd(a_{l},a_{l+1},...,a_{r})gcd(al​​,al+1​​,...,ar​​)为多少,然后再在map 里面查找对应答案即可.

    错因分析:1.没能正确发现对于一个a(<=1e9)他的质因数个数是loga级别的,因为比如2*2*3*5.....=a,则左边至多loga个元素,

  • 相关阅读:
    jQuery 对象 等操作
    根据文件大小自动判断单位B,KB,MB,GB
    PHP 根据子ID递归获取父级ID,实现逐级分类导航效果
    JQuery 目录树jsTree插件用法
    关于循环列表中包含递归函数的问题
    PHP文件上传大小限制问题
    UEditor+七牛,实现图片直连上传
    修改Ueditor的图片上传地址
    Thinkphp3.2.3加载外部类并调用类里面的方法 获取token
    七牛云--开发笔记
  • 原文地址:https://www.cnblogs.com/smilesundream/p/5751988.html
Copyright © 2020-2023  润新知