• TTTTTTTTTTTTTT POJ 3678 与或异或 2-SAT+强连通 模板题


    Description

    Katu Puzzle is presented as a directed graph G(VE) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ X≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:

     Xa op Xb = c

    The calculating rules are:

    AND 0 1
    0 0 0
    1 0 1
    OR 0 1
    0 0 1
    1 1 1
    XOR 0 1
    0 0 1
    1 1 0

    Given a Katu Puzzle, your task is to determine whether it is solvable.

    Input

    The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
    The following M lines contain three integers (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.

    Output

    Output a line containing "YES" or "NO".

    Sample Input

    4 4
    0 1 1 AND
    1 2 1 OR
    3 2 0 AND
    3 0 0 XOR

    Sample Output

    YES

    Hint

    X0 = 1, X1 = 1, X2 = 0, X3 = 1.

    有一个有向图G(V,E),每条边e(a,b)上有一个位运算符op(AND, OR或XOR)和一个值c(0或1)。

    问能不能在这个图上的每个点分配一个值X(0或1),使得每一条边e(a,b)满足  Xa op Xb =  c

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <cmath>
    #include <vector>
    #include <queue>
    #include <stack>
    #include <map>
    #include <algorithm>
    #include <set>
    using namespace std;
    typedef long long ll;
    typedef unsigned long long Ull;
    #define MM(a,b) memset(a,b,sizeof(a));
    const double eps = 1e-10;
    const int  inf =0x7f7f7f7f;
    const double pi=acos(-1);
    const int maxn=10+1000;
    
    int n,m,pre[maxn],lowlink[maxn],dfs_clock,sccno[maxn],scc_cnt;
    vector<int> G[2*maxn];
    stack<int> S;
    
    void read()
    {
        int a,b,c;char s[10];
        scanf("%d %d %d %s",&a,&b,&c,s);
        if(s[0]=='A')
        {
            if(c)
            {
               G[a].push_back(a+n);
               G[b].push_back(b+n);
            }
            else
            {
               G[a+n].push_back(b);
               G[b+n].push_back(a);
            }
        }
        else if(s[0]=='O')
        {
            if(!c)
            {
                G[a+n].push_back(a);
                G[b+n].push_back(b);
            }
            else
            {
                G[a].push_back(b+n);
                G[b].push_back(a+n);
            }
        }
        else if(s[0]=='X')
        {
            if(c)
            {
                G[a].push_back(b+n);
                G[a+n].push_back(b);
                G[b].push_back(a+n);
                G[b+n].push_back(a);
            }
            else
            {
                G[a].push_back(b);
                G[a+n].push_back(b+n);
                G[b].push_back(a);
                G[b+n].push_back(a+n);
            }
        }
    }
    
    void tarjan(int u)
    {
        pre[u]=lowlink[u]=++dfs_clock;
        S.push(u);
        for(int i=0;i<G[u].size();i++)
        {
            int v=G[u][i];
            if(!pre[v])
                {
                    tarjan(v);
                    lowlink[u]=min(lowlink[u],lowlink[v]);
                }
            else if(!sccno[v])
                    lowlink[u]=min(lowlink[u],pre[v]);
        }
    
        if(lowlink[u]==pre[u])
        {
            scc_cnt++;
            while(1)
            {
                int x=S.top();S.pop();
                sccno[x]=scc_cnt;
                if(x==u) break;//找到了当前强连通的起始节点就退出,<br>//不然会破坏其他强连通分量
            }
        }
    }
    
    void find_scc()
    {
        MM(pre,0);
        MM(sccno,0);
        scc_cnt=dfs_clock=0;
        for(int i=0;i<n;i++)
          if(!pre[i])
                tarjan(i);
    }
    
    int main()
    {
        while(~scanf("%d %d",&n,&m))
        {
            for(int i=0;i<2*n;i++) G[i].clear();
            for(int i=1;i<=m;i++)
                  read();
    
            find_scc();
    
            int flag=1;
            for(int i=0;i<n;i++)
                if(sccno[i]==sccno[i+n])
              {
                flag=0;
                break;
              }
            if(flag) printf("YES
    ");
            else printf("NO
    ");
        }
        return 0;
    }
    

      2-sat的建图参考;

    http://blog.csdn.net/u011466175/article/details/23048459?utm_source=tuicool&utm_medium=referral

    http://blog.csdn.net/leolin_/article/details/7215871

  • 相关阅读:
    手机号不能为空
    选项卡套选项卡
    可以在一个html的文件当中读取另一个html文件的内容
    价格计算
    v形 加强版
    V形
    生成100个Div
    伪元素::after和::before
    数组中的toString,toLocalString,valueOf方法有什么区别
    JavaScript toLocaleString() 方法
  • 原文地址:https://www.cnblogs.com/smilesundream/p/5481927.html
Copyright © 2020-2023  润新知