题意:一群牛被有向的绳子拴起来,如果有一些牛(>=2)的绳子是同向的,他们就能跳跃。求能够跳跃的组数。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
typedef unsigned long long Ull;
#define MM(a,b) memset(a,b,sizeof(a));
const double eps = 1e-10;
const int inf =0x7f7f7f7f;
const double pi=acos(-1);
const int maxn=10000;
vector<int> G[maxn+10];
int n,m,deg[maxn+10],pre[maxn+10],dfs_clock,scc_cnt,sccno[maxn+10],lowlink[maxn+10];
stack<int> S;
void tarjan(int u)
{
pre[u]=lowlink[u]=++dfs_clock;
S.push(u);
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(!pre[v])
{
tarjan(v);
lowlink[u]=min(lowlink[u],lowlink[v]);
}
else if(!sccno[v])
lowlink[u]=min(lowlink[u],pre[v]);
}
if(lowlink[u]==pre[u])
{
scc_cnt++;
while(1)
{
int x=S.top();S.pop();
sccno[x]=scc_cnt;
deg[scc_cnt]++;
if(x==u) break;
}
}
}
void find_scc()
{
MM(pre,0);MM(sccno,0);
scc_cnt=dfs_clock=0;
for(int i=1;i<=n;i++)
if(!pre[i])
tarjan(i);
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
for(int i=1;i<=n;i++)
G[i].clear();
for(int i=1;i<=m;i++)
{
int u,v;
scanf("%d %d",&u,&v);
G[u].push_back(v);
}
MM(deg,0);
find_scc();
int ans=0;
for(int i=1;i<=scc_cnt;i++)
if(deg[i]>=2) ans++;
printf("%d
",ans);
}
return 0;
}
分析:牛能一起跳舞那么他们的绳子朝向就一定是一致的,也就是形成了一个环,即一个强连通分量,
所以只要统计好整个图中元素个数>=2的强连通分量个数就好