• 逻辑回归感知机异同,损失函数思考


    逻辑斯蒂回归和感知机的异同:

    两类都是线性分类器;

    损失函数两者不同:逻辑斯蒂回归使用极大似然(对数损失函数),感知机使用的是均方损失函数(即错误点到分离平面的距离,最小化这个值)

    逻辑斯蒂比感知机的优点在于对于激活函数的改进。

    前者为sigmoid function,后者为阶跃函数。这就导致LR是连续可导,而阶跃函数则没有这个性质。

    LR使得最终结果有了概率解释的能力(将结果限制在0-1之间),sigmoid为平滑函数,能够得到更好的分类结果,而step function为分段函数,对于分类的结果处理比较粗糙,非0即1,而不是返回一个分类的概率。

    逻辑斯蒂回归为什么不能用均方损失作为损失函数呢:

    首先设想一下,目标函数为E_{w,b}=sum_{i=1}^{m}left ( y_{i}-frac{1}{1+e^{-left ( w^{T}x_{i}+b 
ight )}}
ight )^2 ,并不是不可以求解,那为什么不用呢?

    知乎大神解决了我的疑惑:

    如果用最小二乘法,目标函数就是 E_{w,b}=sum_{i=1}^{m}left ( y_{i}-frac{1}{1+e^{-left ( w^{T}x_{i}+b 
ight )}}
ight )^2 ,是非凸的,不容易求解,会得到局部最优。

    最小二乘作为损失函数的函数曲线:

     最小二乘作为逻辑回归模型的损失函数,theta为待优化参数



    如果用最大似然估计,目标函数就是对数似然函数: l_{w,b}=sum_{i=1}^{m}left ( -y_{i}left ( w^{T}x_{i}+b 
ight )+lnleft ( 1+e^{w^{T}x_{i}+b} 
ight ) 
ight ) ,是关于 (w,b) 的高阶连续可导凸函数,可以方便通过一些凸优化算法求解,比如梯度下降法、牛顿法等。

    最大似然作为损失函数的函数曲线(最大似然损失函数后面给出):

    再来附加一个大神的推导:

    面来推一下逻辑回归中最大损失函数到底是怎么来的,因为我看到很多地方只是说了一下用到最大似然的方法,就直接给出了最终的形式,还看到有书里面过程搞错了,也给出了最终的正确形式。

    既然是最大似然,我们的目标当然是要最大化似然概率了:

    max prod_{i=1}^{m}p(y_{i}|x_{i},	heta)

    对于二分类问题有:

    p_{1}=p(y=1|x,	heta)=frac{e^{x	heta}}{1+e^{x	heta}},y=1

    p_{0}=p(y=0|x,	heta)=frac{1}{1+e^{x	heta}},y=0

    用一个式子表示上面这个分段的函数为:(记得写成相乘的形式)

    p=p(y|x,	heta)=p_{1}^{y_{i}}ast p_{0}^{1-y_{i}}

    代入目标函数中,再对目标函数取对数,则目标函数变为:

    max sum_{i=1}^{m}({y_{i}log^{p_{1}}+(1-y_{i})log^{p_{0}})}

    如果用 h_{	heta}(x_{i}) 来表示 p_{1} ,则可用 1-h_{	heta}(x_{i}) 来表示 p_{0} ,再将目标函数max换成min,则目标函数变为:

    min -frac{1}{m}sum_{i=1}^{m}({y_{i}log^{h_{	heta}(x_{i})}+(1-y_{i})log^{1-h_{	heta}(x_{i})})}

    这样就得到最终的形式了!


    作者:临熙
    链接:https://www.zhihu.com/question/65350200/answer/266277291
    来源:知乎
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
     
    逻辑斯蒂回归中的极大似然是什么?极大似然,对数损失函数,交叉熵之间的区别联系:
    逻辑斯蒂回归使用的是极大似然就相当于最小化负的似然函数,从损失函数的角度来看就变成了对数损失
     
    极大似然和交叉熵之间的表现形式一样。好神奇,有空继续补充



  • 相关阅读:
    del命令
    echo命令
    什么是批处理
    ubuntu禁止ping操作(禁用ICMP协议访问)
    树莓派:raspberry pi 3b
    小tips合集
    吐个槽:bose的售后真心差劲!愧对这个顶级音响产品!
    WinSetupFromUSB
    win7 64位下vs不能以管理员身份运行的问题解决
    vs2010中如何设置Visual Assist方便地使用现成的代码编辑器风格
  • 原文地址:https://www.cnblogs.com/smartwhite/p/9109815.html
Copyright © 2020-2023  润新知