• Classification week2: logistic regression classifier 笔记


    华盛顿大学 machine learning: Classification 笔记。

    linear classifier 线性分类器

      

       多项式:

      

    Logistic regression & 概率模型

       

      P(y = +1 | x) = ?

      使用 logistic函数

        

              

      

    这个概率模型怎么来的?

      (李航《统计学习方法》)

      即

                  

      考虑对输入x进行分类的线性函数 w x,其值域为实数域,线性函数wx可转换为概率:

                   

      这时,线性函数值越接近正无穷,概率值就越接近1;线性函数值越接近负无穷,

    概率值就越接近0。

      这种概率描述适用于这样的情况:即在P=0或P=1附近,P对X的变化不敏感。这种概率模型的应用场景主要是分类。

     极大似然估计模型参数w

    Maximize Likelihood Estimation(MLE) 极大似然估计

      

             

        即 选择使  l(w) 最大的参数 w。

      对 l(w) 取对数:

      

       展开得

       

    梯度下降(Gradient-descent):

      

    防止过拟合:

      即

       

      梯度下降

      

  • 相关阅读:
    Git更新或提交出错的解决办法
    webpack简单学习的入门教程
    CentOS源码安装QT
    后台程序在向tty/串口写数据的时候stop了
    Linux signal 处理
    Linux C 获取 文件的大小
    Microsoft Excel 标题栏或首行锁定
    Socket连接何时需要断开
    Windows MFC 打开文本
    动态库的生产和调用
  • 原文地址:https://www.cnblogs.com/smartweed/p/8559345.html
Copyright © 2020-2023  润新知