• Coursera machine learning 第二周 编程作业 Linear Regression


    必做:

    [*] warmUpExercise.m - Simple example function in Octave/MATLAB
    [*] plotData.m - Function to display the dataset
    [*] computeCost.m - Function to compute the cost of linear regression
    [*] gradientDescent.m - Function to run gradient descent

    1.warmUpExercise.m

    A = eye(5);

    2.plotData.m

    plot(x, y, 'rx', 'MarkerSize', 10); % Plot the data
    ylabel('Profit in $10,000s'); % Set the y-axis label
    xlabel('Population of City in 10,000s'); % Set the x-axis label

    3.computeCost.m

    function J = computeCost(X, y, theta)
    %COMPUTECOST Compute cost for linear regression
    %   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
    %   parameter for linear regression to fit the data points in X and y
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    %               You should set J to the cost.
    
    H = X*theta-y;
    J = (1/(2*m))*sum(H.*H);
    
    % =========================================================================
    
    end

    公式:   

    注意matlab中  .* 的用法。

    4.gradientDescent.m

    function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENT Performs gradient descent to learn theta
    %   theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by 
    %   taking num_iters gradient steps with learning rate alpha
    
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
    
    for iter = 1:num_iters
    
        % ====================== YOUR CODE HERE ======================
        % Instructions: Perform a single gradient step on the parameter vector
        %               theta. 
        %
        % Hint: While debugging, it can be useful to print out the values
        %       of the cost function (computeCost) and gradient here.
        
         H = X*theta-y;
        theta(1)=theta(1)-alpha*(1/m)*sum(H.*X(:,1));
        theta(2)=theta(2)-alpha*(1/m)*sum(H.*X(:,2)); % ============================================================ % Save the cost J in every iteration J_history(iter) = computeCost(X, y, theta); end end

    单变量梯度下降

    对函数J(θ)求偏导  

    H.*X(:,1)

    θi向着梯度最小的方向减少,alpha为步长。

    theta(i)=theta(i)-alpha*(1/m)*sum(H.*X(:,i));

  • 相关阅读:
    【三中校内训练】怎样更有力气
    【四校联考】立方体
    【四校联考】点
    第11章 卷积神经网络(CNNs)
    第10章神经网络基础
    在jupyter中配置python3
    第9章 优化方法和归一化
    第8章 参数化学习(parameterized learning)
    第7章 你的第一个分类器
    第6章 配置开发环境
  • 原文地址:https://www.cnblogs.com/smartweed/p/6784161.html
Copyright © 2020-2023  润新知