• Codeforces Round #392 (Div. 2) F. Geometrical Progression


    原题地址:http://codeforces.com/contest/758/problem/F

    F. Geometrical Progression

    time limit per test

    4 seconds

    memory limit per test

    256 megabytes

    input

    standard input

    output

    standard output

    For given n, l and r find the number of distinct geometrical progression, each of which contains n distinct integers not less than l and not greater than r. In other words, for each progression the following must hold: l ≤ ai ≤ r and ai ≠ aj , where a1, a2, ..., an is the geometrical progression, 1 ≤ i, j ≤ n and i ≠ j.

    Geometrical progression is a sequence of numbers a1, a2, ..., an where each term after first is found by multiplying the previous one by a fixed non-zero number d called the common ratio. Note that in our task d may be non-integer. For example in progression 4, 6, 9, common ratio is .

    Two progressions a1, a2, ..., an and b1, b2, ..., bn are considered different, if there is such i (1 ≤ i ≤ n) that ai ≠ bi.

    Input

    The first and the only line cotains three integers n, l and r (1 ≤ n ≤ 107, 1 ≤ l ≤ r ≤ 107).

    Output

    Print the integer K — is the answer to the problem.

    Examples

    Input

    1 1 10

    Output

    10

    Input

    2 6 9

    Output

    12

    Input

    3 1 10

    Output

    8

    Input

    3 3 10

    Output

    2

    Note

    These are possible progressions for the first test of examples:

    • 1;
    • 2;
    • 3;
    • 4;
    • 5;
    • 6;
    • 7;
    • 8;
    • 9;
    • 10.

    These are possible progressions for the second test of examples:

    • 6, 7;
    • 6, 8;
    • 6, 9;
    • 7, 6;
    • 7, 8;
    • 7, 9;
    • 8, 6;
    • 8, 7;
    • 8, 9;
    • 9, 6;
    • 9, 7;
    • 9, 8.

    These are possible progressions for the third test of examples:

    • 1, 2, 4;
    • 1, 3, 9;
    • 2, 4, 8;
    • 4, 2, 1;
    • 4, 6, 9;
    • 8, 4, 2;
    • 9, 3, 1;
    • 9, 6, 4.

    These are possible progressions for the fourth test of examples:

    • 4, 6, 9;
    • 9, 6, 4.

    题意:给定 n, l and r ,求项数为n, 公比不为1,且数列每一项都属于[l,r]范围的不同的 等比数列 的个数。

    题解:其实是先缩小范围然后直接枚举。

    考虑数据范围1 ≤ n ≤ 107, 1 ≤ l ≤ r ≤ 10

    设等比数列公比为d, d表示为 q/p,其中q或p为不同时等于1,且互质的正整数。

    递增和递减数列的情况是成对出现的,即p和q互换。

    所以不妨只考虑递增数列的情况,即公比d表示为q/p,其中pq互质,p为任意正整数,q>p,q为大于等于2的正整数。

    则数列末项整除于qn-1 其中q>=2,2^24>10^7, n>=24时无解。

    n=1时为结果为r-l+1, n=2时结果为(r-l+1)*(r-l),n>24时0.

    n>=3&&n<24时,可以通过枚举出p和q的情况求解。

    n>=3, 由于数列末项整除于qn-1 ,则qn-1 ≤ 107,即枚举 p,q的上界是(1071/(n-1),当n=3时,这个值为3162,可以通过暴力枚举实现。

    枚举p,q,

    每找到一对(p,q)且gcd(p,q)==1

    考虑数列末项  an= a1*qn-1/pn-1  ,

    要满足 a1>=l, an<=r 的范围条件,若 l*qn-1/pn-1 >r 则不满足题意,continue;

    l*qn-1/pn-1 <=r 则有满足[l,r]范围的等比数列

    现在求[l,r]范围,公比为q/p,项数为n的等比数列的个数。

    数列各项为 a1, a1*q/p ……a1*qn-1/qn-1qn-1pn-1  /pn-1 /pn-1 pn-1q/pq/pq/pn-1 ,等比数列的个数即为a1可能的值。

    末项为moa1*qn-1/ pn-1  所以a1必整除于pn-1 ,即a1可能的值为 [l,r*pn-1/qn-1]范围内可被 pn-1整除的, 即 (r*pn-1/qn-1)/pn-1-l/pn-1

    #include <bits/stdc++.h>
    #define LL long long
    using namespace std;
    
    LL gcd(LL a, LL b){
        if(b==0) return a;
        else return gcd(b,a%b);
    }
    
    LL QuickPow(LL a, LL n){
        LL ret=1;
        while(n){
            if(n&1) ret*=a;
            a*=a;
            n>>=1;
        }
        return ret;
    }
    
    LL l,r,n;
    LL ans;
    
    int main()
    {
        cin>>n>>l>>r;
        if(n>24){
            cout<<0;return 0;
        }
        if(n==1){
            cout<<r-l+1;return 0;
        }
        if(n==2){
            cout<<(r-l+1)*(r-l);return 0;
        }
    
        //n>=3&&n<24的情况
        LL upperlimit,pn,qn;
        //p,q的枚举上界
        upperlimit=pow(2,double(log2(1e7+50)/(n-1))); //注意精度
        for(LL p=1;p<=upperlimit;p++)
            for(LL q=p+1;q<=upperlimit;q++)
                if(gcd(p,q)==1)
                {
                    qn=QuickPow(q,n-1);
                    pn=QuickPow(p,n-1);
                    if(l*qn/pn>r) continue;
    
                    //a1可能的值 :[l,r*pn/qn]范围内可被 pn整除的正整数,
                    ans+=(r*pn/qn)/pn-(l-1)/pn;
                }
           //递增数列递减数列成对出现,只考虑了递增数列
            cout<<ans*2;
            return 0;
    }

    a1*qn-1/qn-1qn-1pn-1  /pn-1 /pn-1 pn-1q/pq/pq/pn-1 qn-1/qn-1qn-1pn-1  /pn-1 /pn-1 pn-1q/pq/pq/pn的

  • 相关阅读:
    LeetCode-Read N Characters Given Read4 II
    LeetCode-One Edit Distance
    LeetCode-Palindrome Permutation II
    LeetCode- Longest Absolute File Path
    LeetCode-Strobogrammatic Number II
    LeetCode-Strobogrammatic Number
    LeetCode-Flatten 2D Vector
    LeetCode-Shortest Word Distance III
    LeetCode-Shortest Word Distance II
    Cookie/Session
  • 原文地址:https://www.cnblogs.com/smartweed/p/6323297.html
Copyright © 2020-2023  润新知