描述
Profess X is an expert in signal processing. He has a device which can send a particular 1 second signal repeatedly. The signal is A0 ... An-1 under n Hz sampling.
One day, the device fell on the ground accidentally. Profess X wanted to check whether the device can still work properly. So he ran another n Hz sampling to the fallen device and got B0 ... Bn-1.
To compare two periodic signals, Profess X define the DIFFERENCE of signal A and B as follow:
You may assume that two signals are the same if their DIFFERENCE is small enough.
Profess X is too busy to calculate this value. So the calculation is on you.
题解:
A[]的平方和 与 B[]的平方和可以直接求出。所以只要求出的最大值即可得到答案。
即求A[]与B[]的循环卷积。 FFT求解。
注意由于数据较大,FFT会出现精度问题。最后结果会有浮点精度误差,但是由结果得到的 k 是正确的,所以一个无赖的办法是根据FFT 的结果求 K,然后再自己算一遍得到最后答案。
注:题解的标准做法是找两个 10910^9109
左右模数 NTT 后 CRT 。
#include <algorithm> #include <cstring> #include <string.h> #include <iostream> #include <list> #include <map> #include <set> #include <stack> #include <string> #include <utility> #include <vector> #include <cstdio> #include <cmath> #define LL long long #define N 60005 #define INF 0x3ffffff using namespace std; const long double PI = acos(-1.0); struct Complex // 复数 { long double r,i; Complex(long double _r = 0,long double _i = 0) { r = _r; i = _i; } Complex operator +(const Complex &b) { return Complex(r+b.r,i+b.i); } Complex operator -(const Complex &b) { return Complex(r-b.r,i-b.i); } Complex operator *(const Complex &b) { return Complex(r*b.r-i*b.i,r*b.i+i*b.r); } }; void change(Complex y[],int len) // 二进制平摊反转置换 O(logn) { int i,j,k; for(i = 1, j = len/2;i < len-1;i++) { if(i < j)swap(y[i],y[j]); k = len/2; while( j >= k) { j -= k; k /= 2; } if(j < k)j += k; } } void fft(Complex y[],int len,int on) //DFT和FFT { change(y,len); for(int h = 2;h <= len;h <<= 1) { Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h)); for(int j = 0;j < len;j += h) { Complex w(1,0); for(int k = j;k < j+h/2;k++) { Complex u = y[k]; Complex t = w*y[k+h/2]; y[k] = u+t; y[k+h/2] = u-t; w = w*wn; } } } if(on == -1) for(int i = 0;i < len;i++) y[i].r /= len; } const int MAXN = 240040; Complex x1[MAXN],x2[MAXN]; LL a[MAXN/4],b[MAXN/4]; //原数组 long long num[MAXN]; //FFT结果 void init(){ memset(num,0,sizeof(num)); memset(x1,0,sizeof(x1)); memset(x2,0,sizeof(x2)); } int main() { int T; scanf("%d",&T); LL suma,sumb; while(T--) { int n; suma=0;sumb=0; init(); scanf("%d",&n); for(int i = 0;i < n;i++) {scanf("%lld",&a[i]);suma+=a[i]*a[i];} for(int i = 0;i < n;i++) {scanf("%lld",&b[i]);sumb+=b[i]*b[i];} int len = 1; while( len < 2*n ) len <<= 1; for(int i = 0;i < n;i++){ x1[i] = Complex(a[i],0); } for(int i = 0;i < n;i++){ x2[i] = Complex(b[n-i-1],0); } // for(int i=n;i<len;i++) x1[i]=Complex(0,0); fft(x1,len,1);fft(x2,len,1); for(int i = 0;i < len;i++){ x1[i] = x1[i]*x2[i]; } fft(x1,len,-1); for(int i = 0;i < len;i++){ num[i] = (LL)(x1[i].r+0.5); } // for(int i = 0;i < len;i++) cout<<num[i]<<endl; LL ret=num[n-1]; int flag=0; // cout<<ret<<endl; for(int i=0;i<n-2;i++) { // cout<<num[i]+num[i+n]<<endl; if(ret<num[i]+num[i+n]) {ret=num[i]+num[i+n]; flag=n-1-i;} //注意,此时得到的ret会有很小的浮点精度误差, //flag表示k,这个是正确的 } ret=0; for(int i=0;i<n;i++){ ret+=a[i]*b[(i+flag)%n]; //重新算一遍得到最后答案 } LL ans=suma+sumb-2*ret; cout<< ans<<endl; } return 0; }