• hihoCoder #1388 : Periodic Signal ( 2016 acm 北京网络赛 F题)


    时间限制:5000ms
    单点时限:5000ms
    内存限制:256MB

    描述

    Profess X is an expert in signal processing. He has a device which can send a particular 1 second signal repeatedly. The signal is A0 ... An-1 under n Hz sampling.

    One day, the device fell on the ground accidentally. Profess X wanted to check whether the device can still work properly. So he ran another n Hz sampling to the fallen device and got B0 ... Bn-1.

    To compare two periodic signals, Profess X define the DIFFERENCE of signal A and B as follow:

    You may assume that two signals are the same if their DIFFERENCE is small enough.
    Profess X is too busy to calculate this value. So the calculation is on you.

    题解

    A[]的平方和 与 B[]的平方和可以直接求出。所以只要求出的最大值即可得到答案。

    即求A[]与B[]的循环卷积。 FFT求解。

    注意由于数据较大,FFT会出现精度问题。最后结果会有浮点精度误差,但是由结果得到的 k 是正确的,所以一个无赖的办法是根据FFT 的结果求 K,然后再自己算一遍得到最后答案。

    注:题解的标准做法是找两个 10910^9109​​ 左右模数 NTT 后 CRT 。

    #include <algorithm>
    #include <cstring>
    #include <string.h>
    #include <iostream>
    #include <list>
    #include <map>
    #include <set>
    #include <stack>
    #include <string>
    #include <utility>
    #include <vector>
    #include <cstdio>
    #include <cmath>
    
    #define LL long long
    #define N 60005
    #define INF 0x3ffffff
    
    using namespace std;
    
    const long double PI = acos(-1.0);
    
    
    struct Complex // 复数
    {
        long double r,i;
        Complex(long double _r = 0,long double _i = 0)
        {
            r = _r; i = _i;
        }
        Complex operator +(const Complex &b)
        {
            return Complex(r+b.r,i+b.i);
        }
        Complex operator -(const Complex &b)
        {
            return Complex(r-b.r,i-b.i);
        }
        Complex operator *(const Complex &b)
        {
            return Complex(r*b.r-i*b.i,r*b.i+i*b.r);
        }
    };
    
    void change(Complex y[],int len) // 二进制平摊反转置换 O(logn)
    {
        int i,j,k;
        for(i = 1, j = len/2;i < len-1;i++)
        {
            if(i < j)swap(y[i],y[j]);
            k = len/2;
            while( j >= k)
            {
                j -= k;
                k /= 2;
            }
            if(j < k)j += k;
        }
    }
    void fft(Complex y[],int len,int on) //DFT和FFT
    {
        change(y,len);
        for(int h = 2;h <= len;h <<= 1)
        {
            Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
            for(int j = 0;j < len;j += h)
            {
                Complex w(1,0);
                for(int k = j;k < j+h/2;k++)
                {
                    Complex u = y[k];
                    Complex t = w*y[k+h/2];
                    y[k] = u+t;
                    y[k+h/2] = u-t;
                    w = w*wn;
                }
            }
        }
        if(on == -1)
            for(int i = 0;i < len;i++)
                y[i].r /= len;
    }
    
    const int MAXN = 240040;
    
    Complex x1[MAXN],x2[MAXN];
    LL a[MAXN/4],b[MAXN/4];                //原数组
    long long num[MAXN];     //FFT结果
    void init(){
         memset(num,0,sizeof(num));
         memset(x1,0,sizeof(x1));
         memset(x2,0,sizeof(x2));
    }
    
    int main()
    {
        int T;
        scanf("%d",&T);
        LL suma,sumb;
        while(T--)
            {
                int n;
                 suma=0;sumb=0;
                init();
                scanf("%d",&n);
                 for(int i = 0;i < n;i++) {scanf("%lld",&a[i]);suma+=a[i]*a[i];}
                 for(int i = 0;i < n;i++) {scanf("%lld",&b[i]);sumb+=b[i]*b[i];}
                int len = 1;
                while( len < 2*n ) len <<= 1;
                 for(int i = 0;i < n;i++){
                    x1[i] = Complex(a[i],0);
                }
                 for(int i = 0;i < n;i++){
                    x2[i] = Complex(b[n-i-1],0);
                }
          //      for(int i=n;i<len;i++) x1[i]=Complex(0,0);
                fft(x1,len,1);fft(x2,len,1);
                for(int i = 0;i < len;i++){
                    x1[i] = x1[i]*x2[i];
                }
                fft(x1,len,-1);
                for(int i = 0;i < len;i++){
                    num[i] = (LL)(x1[i].r+0.5);
                }
              //  for(int i = 0;i < len;i++) cout<<num[i]<<endl;
              LL ret=num[n-1];
              int flag=0;
             // cout<<ret<<endl;
              for(int i=0;i<n-2;i++) {
                //    cout<<num[i]+num[i+n]<<endl;
                if(ret<num[i]+num[i+n])
                    {ret=num[i]+num[i+n]; flag=n-1-i;}
                      //注意,此时得到的ret会有很小的浮点精度误差,
                    //flag表示k,这个是正确的
              }
              ret=0;
              for(int i=0;i<n;i++){
                ret+=a[i]*b[(i+flag)%n]; //重新算一遍得到最后答案
              }
              LL ans=suma+sumb-2*ret;
              cout<< ans<<endl;
            }
        return 0;
    }        
  • 相关阅读:
    魅力惠_百度百科
    新奢侈主义_百度百科
    FastSocket学习笔记~再说客户端与服务端的组成
    在线支付文章索引(支付宝_微信_银联)
    微信JSApi支付~微信支付代理模式的实现(原创)
    爱上MVC~ajax调用分部视图session超时页面跳转问题
    C#~异步编程再续~await与async引起的w3wp.exe崩溃-问题友好的解决
    poj-3895-Cycles of Lanes 简单DFS
    How to search a table in a store proc and open the store proc
    Github-Client(ANDROID)开源之旅(四) ------ 简介Roboguice
  • 原文地址:https://www.cnblogs.com/smartweed/p/5903838.html
Copyright © 2020-2023  润新知