1.概述
在分布式实时数据流场景下,随着数据量的增长,对Kafka集群的性能和稳定性的要求也很高。本篇博客将从生产者和消费者两方面来做性能测试,针对具体的业务和数据量,来调优Kafka集群。
2.内容
2.1 测试环境
本次测试的环境信息由三台物理机组成,具体信息如下所示:
2.2 测试工具
Kafka系统提供了测试工具kafka-producer-perf-test.sh和kafka-consumer-perf-test.sh,通过该工具可以对生产者性能和消费者性能进行测试,获取一组最佳的参数值,进而提升生产者的发送效率和消费者的读取效率。这里如果需要实现带有线程参数功能的工具,可以修改工具源代码,新建一个kafka-producer-perf-test-0.8.sh脚本,实现内容如下:
# 使用老版本的ProducerPerformance工具类 exec $(dirname $0)/kafka-run-class.sh kafka.tools.ProducerPerformance "$@"
2.2.1 生产者测试参数
2.2.2 消费者测试参数
3.生产者测试
生产者测试,分别从线程数、分区数、副本数、Broker数、同步与异步模式、批处理大小、消息长度大小、数据压缩等维度来进行。
3.1 线程数
创建一个拥有6个分区、1个副本的Topic,设置不同的线程数并发送相同的数据量,查看性能变化。测试脚本如下:
# 创建主题 [hadoop@dn1 ~]$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181, dn3:2181 --topic test_producer_perf --partitions 6 --replication-factor 1 # 设置1个线程数 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf --threads 1 --broker-list dn1:9092, dn2:9092, dn3:9092 # 设置10个线程数 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf --threads 10 --broker-list dn1:9092, dn2:9092, dn3:9092 # 设置20个线程数 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf --threads 20 --broker-list dn1:9092, dn2:9092, dn3:9092 # 设置25个线程数 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf --threads 25 --broker-list dn1:9092, dn2:9092, dn3:9092 # 设置30个线程数 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf --threads 30 --broker-list dn1:9092, dn2:9092, dn3:9092
3.1.1 测试结果
3.1.2 结论
向一个拥有6个分区、1个副本的Topic中,发送500万条消息记录时,随着线程数的增加,每秒发送的消息记录会逐渐增加。在线程数为25时,每秒发送的消息记录达到最佳值,随后再增加线程数,每秒发送的消息记录数反而会减少。
3.2 分区数
(1)新建一个拥有12个分区、1个副本的主题;
(2)新建一个拥有24个分区、1个副本的主题;
(3)向拥有12个分区、1个副本的主题中发送相同数量的消息记录,查看性能变化;
(4)向拥有24个分区、1个副本的主题中发送相同数量的消息记录,查看性能变化。
执行命令如下:
# 创建一个拥有12个分区的主题 [hadoop@dn1 ~]$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181, dn3:2181 --topic test_producer_perf_p12 --partitions 12 --replication-factor 1 # 创建一个拥有24个分区的主题 [hadoop@dn1 ~]$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181, dn3:2181 --topic test_producer_perf_p24 --partitions 24 --replication-factor 1 # 用一个线程发送数据到拥有12个分区的主题中 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_p12 --threads 1 --broker-list dn1:9092, dn2:9092, dn3:9092 # 用一个线程发送数据到拥有24个分区的主题中 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_p24 --threads 1 --broker-list dn1:9092, dn2:9092, dn3:9092
3.2.1 测试结果
3.2.2 结论
从测试结果来看,分区数越多,单线程生产者的吞吐量越小。
3.3 副本数
(1)创建一个拥有两个副本、6个分区的主题;
(2)创建一个拥有3个副本、6个分区的主题;
(3)向拥有两个副本、6个分区的主题中发送相同数量的消息记录,查看性能变化;
(4)向拥有3个副本、6个分区的主题中发送相同数量的消息记录,查看性能变化;
执行命令如下:
# 创建一个拥有两个副本、6个分区的主题 [hadoop@dn1 ~]$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181, dn3:2181 --topic test_producer_perf_r2 --partitions 6 --replication-factor 2 # 创建一个拥有3个副本、6个分区的主题 [hadoop@dn1 ~]$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181, dn3:2181 --topic test_producer_perf_r3 --partitions 6 --replication-factor 3 # 用3个线程发送数据到拥有两个副本的主题中 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_r2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 # 用3个线程发送数据到拥有3个副本的主题中 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_r3 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092
3.3.1 测试结果
3.3.2 结论
从测试结果来看,副本数越多,吞吐量越小。
3.4 Broker数量
通过增加Broker节点数量来查看性能变化,脚本如下:
# Kafka节点数为4个时,异步发送消息记录 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_b3 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092, dn4:9092 --batch-size 3000 --request-timeout-ms 100000
3.4.1 测试结果
3.4.2 结论
从测试结果来看,增加Kafka Broker数量,吞吐量会增加。
3.5 同步与异步模式
分别使用同步和异步模式发送相同数量的消息记录,查看性能变化。执行脚本如下:
# 创建一个有用3个副本、6个分区的主题 [hadoop@dn1 ~]$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181, dn3:2181 --topic test_producer_perf_s2 --partitions 6 --replication-factor 3 # 使用同步模式发送消息数据 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --sync # 使用异步模式发送消息记录 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092
3.5.1 测试结果
3.5.2 结论
从测试结果来看,使用异步模式发送消息数据,比使用同步模式发送消息数据,吞吐量是同步模式的3倍左右。
3.6 批处理大小
使用异步模式发送相同数量的消息数据,改变批处理量的大小,查看性能变化,执行脚本如下:
# 以批处理模式发送,大小为1000条 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --batch-size 1000 --request-timeout-ms 100000 # 以批处理模式发送,大小为3000条 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --batch-size 3000 --request-timeout-ms 100000 # 以批处理模式发送,大小为5000条 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --batch-size 5000 --request-timeout-ms 100000 # 以批处理模式发送,大小为7000条 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --batch-size 7000 --request-timeout-ms 100000
3.6.1 测试结果
3.6.2 结论
从测试的结果来看,发送的消息随着批处理大小增加而增加。当批处理大小增加到3000~5000时,吞吐量达到最佳值。而后再增加批处理大小,吞吐量的性能会下降。
3.7 消息长度的大小
改变消息的长度大小,查看性能变化,执行脚本如下:
# 发送消息,长度为100字节 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --batch-size 3000 --request-timeout-ms 100000 --message-size 100 # 发送消息,长度为200字节 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --batch-size 3000 --request-timeout-ms 100000 --message-size 200 # 发送消息,长度为500字节 [hadoop@dn1 ~]$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test_producer_perf_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --batch-size 3000 --request-timeout-ms 100000 --message-size 500
3.7.1 测试结果
3.7.2 结论
从测试结果来看,随着消息长度的增加,每秒所能发送的消息数量逐渐减少(nMsg/sec)。但是,每秒发送的消息的总大小(MB/sec),会随着消息长度的增加而增加。
4.消费者测试
消费者测试,可以从线程数、分区数、副本数等维度来进行测试。
4.1 线程数
创建一个拥有6个分区、1个备份的Topic,用不同的线程数读取相同的数据量,查看性能变化。测试脚本如下:
# 创建主题 [hadoop@dn1 ~]$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181, dn3:2181 --topic test_consumer_perf --partitions 6 --replication-factor 1 # 设置1个线程数 [hadoop@dn1 ~]$ kafka-consumer-perf-test.sh –zookeeper dn1:2181,dn2:2181,dn3:2181 --messages 5000000 --topic test_consumer_perf --group g1 --threads 1 # 设置3个线程数 [hadoop@dn1 ~]$ kafka-consumer-perf-test.sh –zookeeper dn1:2181,dn2:2181,dn3:2181 --messages 5000000 --topic test_consumer_perf --group g2 --threads 3 # 设置6个线程数 [hadoop@dn1 ~]$ kafka-consumer-perf-test.sh –zookeeper dn1:2181,dn2:2181,dn3:2181 --messages 5000000 --topic test_consumer_perf --group g3 --threads 6
4.1.1 测试结果
4.1.2 结论
随着线程数的增加,每秒读取的消息记录会逐渐增加。在线程数与消费主题的分区相等时,吞吐量达到最佳值。随后,再增加线程数,新增的线程数将会处于空闲状态,对提升消费者程序的吞吐量没有帮助。
4.2 分区数
新建一个Topic,改变它的分区数,读取相同数量的消息记录,查看性能变化,执行脚本如下:
# 创建一个拥有12个分区的主题 [hadoop@dn1 ~]$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181, dn3:2181 --topic test_consumer_perf_p12 --partitions 12 --replication-factor 1 # 创建一个拥有24个分区的主题 [hadoop@dn1 ~]$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181, dn3:2181 --topic test_consumer_perf_p24 --partitions 24 --replication-factor 1 # 用一个线程读取数据到拥有12个分区的主题中 [hadoop@dn1 ~]$ kafka-consumer-perf-test.sh –zookeeper dn1:2181,dn2:2181,dn3:2181 --messages 5000000 –topic test_consumer_perf_p12_--group g2 --threads 1 # 用一个线程读取数据到拥有12个分区的主题中 [hadoop@dn1 ~]$ kafka-consumer-perf-test.sh –zookeeper dn1:2181,dn2:2181,dn3:2181 --messages 5000000 –topic test_consumer_perf_p24_--group g3 --threads 1
4.2.1 测试结果
4.2.2 结论
当分区数增加时,如果线程数保持不变,则消费者程序的吞吐量性能会下降。
4.3 副本数
新建Topic,改变Topic的副本数,读取相同数量的消息记录,查看性能变化,执行脚本如下:
# 创建一个有用两个副本、6个分区的主题 [hadoop@dn1 ~]$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181, dn3:2181 –topic test_consumer_perf_r2 --partitions 6 --replication-factor 2 # 创建一个有3个副本、6个分区的主题 [hadoop@dn1 ~]$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181, dn3:2181 –topic test_consumer_perf_r3 --partitions 6 --replication-factor 3 # 用3个线程读取数据到拥有两个副本的主题中 [hadoop@dn1 ~]$ kafka-consumer-perf-test.sh –zookeeper dn1:2181 ,dn2:2181,dn3:2181 --messages 5000000 –topic test_consumer_perf_r2_--group g2 --threads 3 # 用3个线程读取数据到拥有3个副本的主题中 [hadoop@dn1 ~]$ kafka-consumer-perf-test.sh --zookeeper dn1:2181 ,dn2:2181,dn3:2181 --messages 5000000 –topic test_consumer_perf_r3_--group g3 --threads 3
4.3.1 测试结果
4.3.2 结论
副本数对消费者程序的吞吐量影响较小,消费者程序是从Topic的每个分区的Leader上读取数据的,而与副本数无关。
5.总结
Kafka性能测试步骤并不复杂,大家可以根据实际的测试环境、数据量,通过对生产者和消费者不同维度的测试,来获取一组最佳的调优参数值。
6.结束语
这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!
另外,博主出书了《Kafka并不难学》,喜欢的朋友或同学, 可以在公告栏那里点击购买链接购买博主的书进行学习,在此感谢大家的支持。