• 实验四 决策树算法及应用


    实验目的

    1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
    2.掌握常见的高斯模型,多项式模型和伯努利模型;
    3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
    4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。

    实验要求

    1.实现高斯朴素贝叶斯算法。
    2.熟悉sklearn库中的朴素贝叶斯算法;
    3.针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
    4.针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。

    实验报告内容

    1.对照实验内容,撰写实验过程、算法及测试结果;
    2.代码规范化:命名规则、注释;
    3.分析核心算法的复杂度;
    4.查阅文献,讨论各种朴素贝叶斯算法的应用场景;
    5.讨论朴素贝叶斯算法的优缺点。

    实验代码

    1.分类决策树模型是表示基于特征对实例进行分类的树形结构。决策树可以转换成一个if-then规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布。

    2.决策树学习旨在构建一个与训练数据拟合很好,并且复杂度小的决策树。因为从可能的决策树中直接选取最优决策树是NP完全问题。现实中采用启发式方法学习次优的决策树。

    决策树学习算法包括3部分:特征选择、树的生成和树的剪枝。常用的算法有ID3、
    C4.5和CART。

    3.特征选择的目的在于选取对训练数据能够分类的特征。特征选择的关键是其准则。常用的准则如下:

    (1)样本集合(D)对特征(A)的信息增益(ID3)

    [g(D, A)=H(D)-H(D|A) ]

    [H(D)=-sum_{k=1}^{K} frac{left|C_{k} ight|}{|D|} log _{2} frac{left|C_{k} ight|}{|D|} ]

    [H(D | A)=sum_{i=1}^{n} frac{left|D_{i} ight|}{|D|} Hleft(D_{i} ight) ]

    其中,(H(D))是数据集(D)的熵,(H(D_i))是数据集(D_i)的熵,(H(D|A))是数据集(D)对特征(A)的条件熵。 (D_i)(D)中特征(A)取第(i)个值的样本子集,(C_k)(D)中属于第(k)类的样本子集。(n)是特征(A)取 值的个数,(K)是类的个数。

    (2)样本集合(D)对特征(A)的信息增益比(C4.5)

    [g_{R}(D, A)=frac{g(D, A)}{H(D)} ]

    其中,(g(D,A))是信息增益,(H(D))是数据集(D)的熵。

    (3)样本集合(D)的基尼指数(CART)

    [operatorname{Gini}(D)=1-sum_{k=1}^{K}left(frac{left|C_{k} ight|}{|D|} ight)^{2} ]

    特征(A)条件下集合(D)的基尼指数:

    [operatorname{Gini}(D, A)=frac{left|D_{1} ight|}{|D|} operatorname{Gini}left(D_{1} ight)+frac{left|D_{2} ight|}{|D|} operatorname{Gini}left(D_{2} ight) ]

    4.决策树的生成。通常使用信息增益最大、信息增益比最大或基尼指数最小作为特征选择的准则。决策树的生成往往通过计算信息增益或其他指标,从根结点开始,递归地产生决策树。这相当于用信息增益或其他准则不断地选取局部最优的特征,或将训练集分割为能够基本正确分类的子集。

    5.决策树的剪枝。由于生成的决策树存在过拟合问题,需要对它进行剪枝,以简化学到的决策树。决策树的剪枝,往往从已生成的树上剪掉一些叶结点或叶结点以上的子树,并将其父结点或根结点作为新的叶结点,从而简化生成的决策树。

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter
    import math
    from math import log
    import pprint
    
    # 书上题目5.1
    def create_data():
        datasets = [['青年', '否', '否', '一般', '否'],
                   ['青年', '否', '否', '好', '否'],
                   ['青年', '是', '否', '好', '是'],
                   ['青年', '是', '是', '一般', '是'],
                   ['青年', '否', '否', '一般', '否'],
                   ['中年', '否', '否', '一般', '否'],
                   ['中年', '否', '否', '好', '否'],
                   ['中年', '是', '是', '好', '是'],
                   ['中年', '否', '是', '非常好', '是'],
                   ['中年', '否', '是', '非常好', '是'],
                   ['老年', '否', '是', '非常好', '是'],
                   ['老年', '否', '是', '好', '是'],
                   ['老年', '是', '否', '好', '是'],
                   ['老年', '是', '否', '非常好', '是'],
                   ['老年', '否', '否', '一般', '否'],
                   ]
        labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
        # 返回数据集和每个维度的名称
        return datasets, labels
    
    datasets, labels = create_data()
    train_data = pd.DataFrame(datasets, columns=labels)
    train_data
    
    # 熵
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p / data_length) * log(p / data_length, 2)
                    for p in label_count.values()])
        return ent
    # def entropy(y):
    #     """
    #     Entropy of a label sequence
    #     """
    #     hist = np.bincount(y)
    #     ps = hist / np.sum(hist)
    #     return -np.sum([p * np.log2(p) for p in ps if p > 0])
    
    
    # 经验条件熵
    def cond_ent(datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum(
            [(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
        return cond_ent
    
    
    # 信息增益
    def info_gain(ent, cond_ent):
        return ent - cond_ent
    
    
    def info_gain_train(datasets):
        count = len(datasets[0]) - 1
        ent = calc_ent(datasets)
    #     ent = entropy(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
            print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
        # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
    info_gain_train(np.array(datasets))
    

    利用ID3算法生成决策树,例5.3

    # 定义节点类 二叉树
    class Node:
        def __init__(self, root=True, label=None, feature_name=None, feature=None):
            self.root = root
            self.label = label
            self.feature_name = feature_name
            self.feature = feature
            self.tree = {}
            self.result = {
                'label:': self.label,
                'feature': self.feature,
                'tree': self.tree
            }
    
        def __repr__(self):
            return '{}'.format(self.result)
    
        def add_node(self, val, node):
            self.tree[val] = node
    
        def predict(self, features):
            if self.root is True:
                return self.label
            return self.tree[features[self.feature]].predict(features)
    
    
    class DTree:
        def __init__(self, epsilon=0.1):
            self.epsilon = epsilon
            self._tree = {}
    
        # 熵
        @staticmethod
        def calc_ent(datasets):
            data_length = len(datasets)
            label_count = {}
            for i in range(data_length):
                label = datasets[i][-1]
                if label not in label_count:
                    label_count[label] = 0
                label_count[label] += 1
            ent = -sum([(p / data_length) * log(p / data_length, 2)
                        for p in label_count.values()])
            return ent
    
        # 经验条件熵
        def cond_ent(self, datasets, axis=0):
            data_length = len(datasets)
            feature_sets = {}
            for i in range(data_length):
                feature = datasets[i][axis]
                if feature not in feature_sets:
                    feature_sets[feature] = []
                feature_sets[feature].append(datasets[i])
            cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)
                            for p in feature_sets.values()])
            return cond_ent
    
        # 信息增益
        @staticmethod
        def info_gain(ent, cond_ent):
            return ent - cond_ent
    
        def info_gain_train(self, datasets):
            count = len(datasets[0]) - 1
            ent = self.calc_ent(datasets)
            best_feature = []
            for c in range(count):
                c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
                best_feature.append((c, c_info_gain))
            # 比较大小
            best_ = max(best_feature, key=lambda x: x[-1])
            return best_
    
        def train(self, train_data):
            """
            input:数据集D(DataFrame格式),特征集A,阈值eta
            output:决策树T
            """
            _, y_train, features = train_data.iloc[:, :
                                                   -1], train_data.iloc[:,
                                                                        -1], train_data.columns[:
                                                                                                -1]
            # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
            if len(y_train.value_counts()) == 1:
                return Node(root=True, label=y_train.iloc[0])
    
            # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
            if len(features) == 0:
                return Node(
                    root=True,
                    label=y_train.value_counts().sort_values(
                        ascending=False).index[0])
    
            # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
            max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
            max_feature_name = features[max_feature]
    
            # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T
            if max_info_gain < self.epsilon:
                return Node(
                    root=True,
                    label=y_train.value_counts().sort_values(
                        ascending=False).index[0])
    
            # 5,构建Ag子集
            node_tree = Node(
                root=False, feature_name=max_feature_name, feature=max_feature)
    
            feature_list = train_data[max_feature_name].value_counts().index
            for f in feature_list:
                sub_train_df = train_data.loc[train_data[max_feature_name] ==
                                              f].drop([max_feature_name], axis=1)
    
                # 6, 递归生成树
                sub_tree = self.train(sub_train_df)
                node_tree.add_node(f, sub_tree)
    
            # pprint.pprint(node_tree.tree)
            return node_tree
    
        def fit(self, train_data):
            self._tree = self.train(train_data)
            return self._tree
    
        def predict(self, X_test):
            return self._tree.predict(X_test)
    
    datasets, labels = create_data()
    data_df = pd.DataFrame(datasets, columns=labels)
    dt = DTree()
    tree = dt.fit(data_df)
    
  • 相关阅读:
    绑定对象
    类与对象
    视音频技术干货专栏
    sqlite3把字段为int32(用c++的time(nullptr)获取的)的秒数显示为年月日时分秒
    微信小程序开发 --- 小白之路 --- 心得
    spring cloud --- config 配置中心 [本地、git获取配置文件]
    spring cloud --- Zuul --- 心得
    spring boot --- 注解 @Bean 和@Component
    spring cloud --- Feign --- 心得
    spring cloud --- Ribbon 客户端负载均衡 + RestTemplate + Hystrix 熔断器 [服务保护] ---心得
  • 原文地址:https://www.cnblogs.com/smallsung/p/14941710.html
Copyright © 2020-2023  润新知