• softmax回归推导


    向量(y)(为one-hot编码,只有一个值为1,其他的值为0)真实类别标签(维度为(m),表示有(m)类别):

    [y=egin{bmatrix}y_1\ y_2\ ...\y_mend{bmatrix} ]

    向量(z)为softmax函数的输入,和标签向量(y)的维度一样,为(m):

    [z=egin{bmatrix}z_1\ z_2\ ...\z_mend{bmatrix} ]

    向量(s)为softmax函数的输出,和标签向量(y)的维度一样,为(m):

    [s=egin{bmatrix}s_1\ s_2\ ...\s_mend{bmatrix} ]

    [s_{i}=frac{e^{z_{i}}}{sum_{k=1}^{m}e^{z_{k}}} ]

    交叉熵损失函数:

    [c=-sum_{j=1}^{m}y_jlns_j ]

    损失函数对向量(z)中的每个(z_i)求偏导:

    [frac{partial c}{partial z_i}=-sum_{j=1}^{m}frac{partial (y_jlns_j)}{partial s_j}*frac{partial s_j}{partial z_i} =-sum_{j=1}^{m}frac{y_j}{s_j}*frac{partial s_j}{partial z_i} ]

    当j=i时:

    [frac{partial s_j}{partial z_i}=frac{partial (frac{e^{z_{i}}}{sum_{k=1}^{m}e^{z_{k}}})}{partial z_i} =frac{e^{z_i}*sum_{k=1}^{m}e^{z_k}-e^{z_i}*e^{z_i}}{(sum_{k=1}^{m}e^{z_k})^2} =frac{e^{z_i}}{sum_{k=1}^{m}e^{z_k}}*frac{sum_{k=1}^{m}e^{z_k}-e^{z_i}}{sum_{k=1}^{m}e^{z_k}} =frac{e^{z_i}}{sum_{k=1}^{m}e^{z_k}}*(1-frac{e^{z_i}}{sum_{k=1}^{m}e^{z_k}}) =s_i*(1-s_i) ]

    当j!=i时:

    [frac{partial s_j}{partial z_i}=frac{partial (frac{e^{z_{j}}}{sum_{k=1}^{m}e^{z_{k}}})}{partial z_i} =frac{0*sum_{k=1}^{m}e^{z_k}-e^{z_j}*e^{z_i}}{(sum_{k=1}^{m}e^{z_k})^2} =-frac{e^{z_j}}{sum_{k=1}^{m}e^{z_k}}*frac{e^{z_i}}{sum_{k=1}^{m}e^{z_k}} =-s_js_i ]

    所以:

    [frac{partial s_j}{partial z_i}=egin{cases}s_i(1-s_i)& j=i \ -s_js_i& j eq{i} end{cases} ]

    损失函数对向量(z)中的每个(z_i)求偏导:

    [frac{partial c}{partial z_i} =-sum_{j=1}^{m}frac{y_j}{s_j}*frac{partial s_j}{partial z_i} =-(frac{y_i}{s_i}*frac{partial s_i}{partial z_i}+sum_{j eq{i}}^{m}frac{y_j}{s_j}*frac{partial s_j}{partial z_i}) =-(frac{y_i}{s_i}*s_i(1-s_i)+sum_{j eq{i}}^{m}frac{y_j}{s_j}*(-s_js_i)) ]

    [=-y_i(1-s_i)+sum_{j eq{i}}^{m}y_js_i =-y_i+s_iy_i+sum_{j eq{i}}^{m}y_js_i =-y_i+sum_{j=1}^{m}y_js_i =s_i-y_i ]

  • 相关阅读:
    24.redis持久化之AOF
    23.redis持久化之RBD
    22.redis五大类型常用的方法
    21.ssm框架--详细整合教程(Spring+SpringMVC+Mybatis)
    20.Mybatis之逆向工程
    Maven环境静态资源问题
    db.properties配置文件
    logo4j配置文件
    mybatis-config.xml系统核心配置文件
    注解
  • 原文地址:https://www.cnblogs.com/smallredness/p/11047718.html
Copyright © 2020-2023  润新知