• 杭电多校第一场


    [模板]杭电多校第一场

    据说标题加模板浏览量++

    1002 Operation[贪心+线性基]

    题目强制在线

    一来我就写了一个线段树MLE,仔细一想1.2e8必然MLE

    这题求的是((l,r))上的任意数的最大异或和

    我们来回忆一下线性基求最大异或和的操作:

    将线性基从高位向低位扫,若 xor 上当前扫到的(pos[j])答案变大,就把答案异或上 (pos[j]​)

    因为从高到低,可以改变当前的第(j)位,而以后就没有机会了.改变高的必然比改变低的优.

    而本题只需要记录插入最大且最右边改变第(j)位的下标.如果这个下标比(l)大,那么可以更新(ans)

    #include <bits/stdc++.h>
    
    using namespace std;
    
    const int maxn = 500000 + 7;
    int pos[maxn][32];//每个(1,r)基底
    int las[maxn][32];//每个1最右边的位置
    
    void add(int val, int id) {
        int k = id;
        for (int j = 30; j >= 0; --j) {
            pos[id][j] = pos[id - 1][j];
            las[id][j] = las[id - 1][j];
        }
        for (int j = 30; j >= 0; --j) {
            if (val >> j) {
                if (pos[id][j] == 0) {
                    pos[id][j] = val;
                    las[id][j] = k;
                    break;
                }
                if (k > las[id][j]) {
                    swap(las[id][j], k);
                    swap(val, pos[id][j]);
                }
                val ^= pos[id][j];
            }
        }
    }
    
    int main() {
        int t;
        scanf("%d", &t);
        while (t--) {
            int n, m, op, u, v;
            int l, r;
            scanf("%d%d", &n, &m);
            for (int i = 1, x; i <= n; ++i) {
                scanf("%d", &x);
                add(x, i);
            }
            int las_ans = 0;
            while (m--) {
                scanf("%d", &op);
                if (op == 1) {
                    scanf("%d", &u);
                    u ^= las_ans;
                    n++;
                    add(u, n);
                } else {
                    scanf("%d%d", &u, &v);
                    l = (u ^ las_ans) % n + 1;
                    r = (v ^ las_ans) % n + 1;
                    if (l > r) swap(l, r);
                    las_ans = 0;
                    for (int j = 30; j >= 0; --j)
                        if ((las_ans ^ pos[r][j]) > las_ans && las[r][j] >= l)
                            las_ans ^= pos[r][j];
                    printf("%d
    ", las_ans);
                }
            }
        }
        return 0;
    }
    

    1004 Vacation[思维]

    只看始末状态.

    假设车开到不影响杰瑞到达终点的地方就停止.

    取一个时间的最大值就是答案.理由:

    前面的车比后面快,那影响答案的就是后面的到达时间;如果前面的车比后面慢,那么影响答案的就是前面的车的到达时间,因为他们会接在一起,然后同一时间出发和停止.

    #include<bits/stdc++.h>
     
    typedef long long ll;
    using namespace std;
     
    ll n;
    ll l[100002], s[100002], v[100002];
     
    int main() {
        while (scanf("%lld", &n) != EOF) {
            for (ll i = 0; i <= n; ++i) {
                scanf("%lld", &l[i]);
            }
            for (ll i = 0; i <= n; ++i) {
                scanf("%lld", &s[i]);
            }
            for (ll i = 0; i <= n; ++i) {
                scanf("%lld", &v[i]);
            }
     
            double ans = s[0] * 1.0 / (v[0] * 1.0);
            ll tot = 0;
            for (ll i = 1; i <= n; ++i) {
                tot += l[i];
                ans = max(ans, ((tot + s[i]) * 1.0) / (v[i] * 1.0));
            }
            printf("%.10f
    ", ans);
        }
        return 0;
    }
    

    1005 Path[最短路+网络流]

    求出所有的最短路径

    然后复习一下最小割:https://www.cnblogs.com/smallocean/p/9509817.html

    小心爆int

    #include <bits/stdc++.h>
    
    using namespace std;
    #define ll long long
    
    template<class T>
    inline void read(T &res) {
        res = 0;
        T f = 1;
        char c;
        c = getchar();
        while (c < '0' || c > '9') {
            if (c == '-') f = -1;
            c = getchar();
        }
        while (c >= '0' && c <= '9') {
            res = res * 10 + c - '0';
            c = getchar();
        }
        res *= f;
    }
    
    const int maxn = 1e4 + 7;
    const int maxm = 2e4 + 7;
    const ll inf = 0x3f3f3f3f3f3f3f3f;
    
    struct Dinic {
        struct Edge {
            int next, to;
            ll f;
        } e[maxm];
        int head[maxn];
        ll dep[maxn], tol;
        ll ans;
        int cur[maxn];
        int src, sink, n;
    
        void add(int u, int v, int f) {
            tol++;
            e[tol].to = v;
            e[tol].next = head[u];
            e[tol].f = f;
            head[u] = tol;
            tol++;
            e[tol].to = u;
            e[tol].next = head[v];
            e[tol].f = 0;
            head[v] = tol;
        }
    
        bool bfs() {
            queue<int> q;
            for (register int i = 0; i <= n; ++i) dep[i] = -1;
            q.push(src);
            dep[src] = 0;
            while (!q.empty()) {
                int now = q.front();
                q.pop();
                for (register int i = head[now]; i; i = e[i].next) {
                    if (dep[e[i].to] == -1 && e[i].f) {
                        dep[e[i].to] = dep[now] + 1;
                        if (e[i].to == sink)
                            return true;
                        q.push(e[i].to);
                    }
                }
            }
            return false;
        }
    
        ll dfs(int x, ll maxx) {
            if (x == sink)
                return maxx;
            for (int &i = cur[x]; i; i = e[i].next) {
                if (dep[e[i].to] == dep[x] + 1 && e[i].f > 0) {
                    ll flow = dfs(e[i].to, min(maxx, e[i].f));
                    if (flow) {
                        e[i].f -= flow;
                        e[i ^ 1].f += flow;
                        return flow;
                    }
                }
            }
            return 0;
        }
    
        ll dinic(int s, int t) {
            ans = 0;
            this->src = s;
            this->sink = t;
            while (bfs()) {
                for (register int i = 0; i <= n; ++i)
                    cur[i] = head[i];
                while (ll d = dfs(src, inf))
                    ans += d;
            }
            return ans;
        }
    
        void init(int n) {
            this->n = n;
            for (int i = 0; i <= n; ++i)head[i] = 0;
            tol = 1;
        }
    } G;
    
    struct Dijk {
        ll dist[maxn];
        bool vis[maxn];
    
        struct qnode {
            int v;
            ll c;
    
            qnode(int _v = 0, ll _c = 0) : v(_v), c(_c) {}
    
            bool operator<(const qnode &r) const {
                return c > r.c;
            }
        };
    
        struct edge {
            int v;
            ll cost;
    
            edge(int _v = 0, ll _cost = 0) : v(_v), cost(_cost) {}
        };
    
        vector<edge> E[maxn];
    
        void add(int u, int v, int w) {
            E[u].emplace_back(edge(v, w));
        }
    
        void Dijkstra(int n, int start) {
            memset(vis, false, sizeof(vis));
            for (int i = 1; i <= n; ++i)dist[i] = inf;
            priority_queue<qnode> que;
            dist[start] = 0;
            que.push(qnode(start, 0));
            qnode tmp;
            while (!que.empty()) {
                tmp = que.top();
                que.pop();
                int u = tmp.v;
                if (vis[u])continue;
                vis[u] = true;
                for (int i = 0; i < E[u].size(); ++i) {
                    int v = E[tmp.v][i].v;
                    ll cost = E[u][i].cost;
                    if (!vis[v] && dist[v] > dist[u] + cost) {
                        dist[v] = dist[u] + cost;
                        que.push(qnode(v, dist[v]));
                    }
                }
            }
        }
    
        void init(int n) {
            for (int i = 0; i <= n; ++i) {
                E[i].clear();
            }
        }
    } a;
    
    struct node {
        int u, v;
        ll w;
    } s[maxn];
    
    int main() {
        int T;
        read(T);
        int n, m;
        int x, y, z;
        while (T--) {
            read(n);
            read(m);
            a.init(n);
            for (register int i = 0; i < m; ++i) {
                read(x);
                read(y);
                read(z);
                a.add(x, y, z);
                s[i].u = x, s[i].v = y, s[i].w = z;
            }
            a.Dijkstra(n, 1);
            G.init(n + 10);
            for (register int i = 0; i < m; ++i) {
                if (a.dist[s[i].v] - s[i].w == a.dist[s[i].u]) {
                    G.add(s[i].u, s[i].v, s[i].w);
                }
            }
            printf("%lld
    ", G.dinic(1, n));
        }
        return 0;
    }
    
    

    1009 String[暴力+模拟+合法性判断]

    预处理出后缀和

    判断某个字符加进来是否合法

    非法不加

    合法根据上下限以及后缀有多少个字符来判断

    #include <bits/stdc++.h>
    
    using namespace std;
    
    template<class T>
    inline void read(T &res) {
        res = 0;
        T f = 1;
        char c;
        c = getchar();
        while (c < '0' || c > '9') {
            if (c == '-') f = -1;
            c = getchar();
        }
        while (c >= '0' && c <= '9') {
            res = res * 10 + c - '0';
            c = getchar();
        }
        res *= f;
    }
    
    template<class T>
    inline void out(T x) {
        if (x < 0) {
            putchar('-');
            x = -x;
        }
        if (x >= 10) {
            out(x / 10);
        }
        putchar('0' + x % 10);
    }
    
    const int maxn = 1e5 + 7;
    char str[maxn], ans[maxn];
    
    int l[27], r[27];
    int sum[maxn][27];
    int used[27];
    int now;
    queue<int> pos[27];
    int n, m;
    
    bool check(int id,int p) {
        while (!pos[id].empty() && pos[id].front() < now) pos[id].pop();
        if (pos[id].empty()) return 0;
        int k = pos[id].front();
        int cnt = 0;
        for (int i = 0; i < 26; ++i) {
            if (l[i] > used[i]) {
                if (sum[k+1][i] < l[i]-used[i]) return 0;
                cnt += l[i] - used[i];
            }
        }
        if (cnt > m-p) return 0;
        now = k;
        pos[id].pop();
        return 1;
    }
    
    int main() {
        while (scanf("%s%d", str, &m) != EOF) {
            n = strlen(str);
            for (int i = 0; i < 26; ++i) {
                used[i] = 0, sum[n][i] = 0, read(l[i]), read(r[i]);
                while (!pos[i].empty())pos[i].pop();
            }
            for (int i = 0; i < n; ++i) pos[str[i] - 'a'].push(i);
            for (int i = n - 1; i >= 0; --i) {
                for (int j = 0; j < 26; ++j) sum[i][j] = sum[i + 1][j];
                sum[i][str[i] - 'a']++;
            }
            bool flag = 1;
            now = -1;
            for (int i = 1, j; i <= m; ++i) {
                for (j = 0; j < 26; ++j) {
                    if (r[j] - used[j] == 0) continue;
                    used[j]++;
                    if (check(j,i)) {
                        ans[i] = 'a' + j;
                        break;
                    }
                    used[j]--;
                }
                if (j == 26) {
                    flag = 0;
                    break;
                }
            }
            if (flag) {
                ans[m + 1] = '';
                printf("%s
    ", ans + 1);
            } else {
                puts("-1");
            }
        }
        return 0;
    }
    
    不要忘记努力,不要辜负自己 欢迎指正 QQ:1468580561
  • 相关阅读:
    通配符函数 MatchesMask 的使用
    WinAPI: GetComputerName 获取计算机名称
    TStringList 常用操作
    分割字符串 ExtractStrings
    磁盘类型 GetDriveType
    Delphi 的信息框相关函数
    Delphi 的运算符列表
    类型转换函数
    文件路径相关的字符串操作
    澳洲技术移民介绍
  • 原文地址:https://www.cnblogs.com/smallocean/p/11228081.html
Copyright © 2020-2023  润新知