• 4 Values whose Sum is 0 POJ


    4 Values whose Sum is 0
    Time Limit: 15000MS   Memory Limit: 228000K
    Total Submissions: 29243   Accepted: 8887
    Case Time Limit: 5000MS

    Description

    The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n . 

    Input

    The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D . 

    Output

    For each input file, your program has to write the number quadruplets whose sum is zero. 

    Sample Input

    6
    -45 22 42 -16
    -41 -27 56 30
    -36 53 -37 77
    -36 30 -75 -46
    26 -38 -10 62
    -32 -54 -6 45
    

    Sample Output

    5
    

    Hint

    Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30). 
     
    题意:ABCD四个数列,每个数列抽一个数字,使得和为0,问一共有几组。当一个数列中有多个相同的数字时,把他们作为不同的数字看待。
    思路:直接爆搜肯定会超时,将它们对半分成AB和CD再考虑就可以解决。比如在AB中取出a,b后,CD中要取出-a-b,因此先把CD中所有取数字的情况n*n种给纪录下来,然后排序,用二分查找次数。
     
    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
    #include<cstdlib>
    #include<queue>
    #include<set>
    #include<vector>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define eps 1e-10
    typedef long long ll;
    const int maxn = 4002;
    const int mod = 1e9 + 7;
    int gcd(int a, int b) {
        if (b == 0) return a;  return gcd(b, a % b);
    }
    
    int n;
    int a[maxn],b[maxn],c[maxn],d[maxn];
    int cd[maxn*maxn];
    
    void solve()
    {
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
            {
                cd[i*n+j]=c[i]+d[j];
            }
        sort(cd,cd+n*n);
        ll res=0;
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
            {
                int ab=-(a[i]+b[j]);
                res+=upper_bound(cd,cd+n*n,ab)-lower_bound(cd,cd+n*n,ab);
            }
        cout<<res<<endl;
    }
    int main()
    {
        scanf("%d",&n);
        for(int i=0;i<n;i++)
            scanf("%d %d %d %d",&a[i],&b[i],&c[i],&d[i]);
        
        solve();
    }
  • 相关阅读:
    字符串
    决策树
    结构体实验
    指针实验
    打印杨辉三角
    P176 1.2.3
    第七次作业
    第六次作业
    第五次作业
    第四次修改
  • 原文地址:https://www.cnblogs.com/smallhester/p/9507827.html
Copyright © 2020-2023  润新知