• HDU2489 Minimal Ratio Tree 【DFS】+【最小生成树Prim】


    Minimal Ratio Tree

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2382    Accepted Submission(s): 709


    Problem Description
    For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation.




    Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, which is a sub-graph of the original graph, with m nodes and whose ratio is the smallest among all the trees of m nodes in the graph.
     

    Input
    Input contains multiple test cases. The first line of each test case contains two integers n (2<=n<=15) and m (2<=m<=n), which stands for the number of nodes in the graph and the number of nodes in the minimal ratio tree. Two zeros end the input. The next line contains n numbers which stand for the weight of each node. The following n lines contain a diagonally symmetrical n×n connectivity matrix with each element shows the weight of the edge connecting one node with another. Of course, the diagonal will be all 0, since there is no edge connecting a node with itself.



    All the weights of both nodes and edges (except for the ones on the diagonal of the matrix) are integers and in the range of [1, 100].

    The figure below illustrates the first test case in sample input. Node 1 and Node 3 form the minimal ratio tree.

     

    Output
    For each test case output one line contains a sequence of the m nodes which constructs the minimal ratio tree. Nodes should be arranged in ascending order. If there are several such sequences, pick the one which has the smallest node number; if there's a tie, look at the second smallest node number, etc. Please note that the nodes are numbered from 1 .
     

    Sample Input
    3 2 30 20 10 0 6 2 6 0 3 2 3 0 2 2 1 1 0 2 2 0 0 0
     

    Sample Output
    1 3 1 2
     

    Source
    ⊙﹏⊙‖∣在推断两浮点数大小时应该这样比較:a-b<-(1e-8);我由于不知道这个WA了6次。

    题意:求一个稍微变形的“最小生成树”,其值为边权和除以点权和。

    题解:用深搜在n个点里选出m个点。再求这m个点的“最小生成树”就可以。

    #include <stdio.h>
    #include <string.h>
    #include <limits.h>
    #define maxn 16
    
    int map[maxn][maxn], node[maxn];
    int n, m, store[maxn], vis[maxn];
    double ans;
    bool visted[maxn]; //hash to vis array
    
    double prim()
    {
    	int i, j, u, count = 0, tmp, vnv = 0, vne = 0;
    	for(i = 1; i <= m; ++i) vnv += node[vis[i]];
    	memset(visted, 0, sizeof(visted));
    	visted[1] = 1;
    	while(count < m - 1){
    		for(i = 1, tmp = INT_MAX; i <= m; ++i){
    			if(!visted[i]) continue;
    			for(j = 1; j <= m; ++j){
    				if(!visted[j] && map[vis[i]][vis[j]] < tmp){
    					tmp = map[vis[i]][vis[j]]; u = j;
    				}
    			}
    		}
    		if(tmp != INT_MAX){
    			visted[u] = 1;
    			vne += tmp; ++count;
    		}
    	}
    	return vne * 1.0 / vnv;
    }
    
    void DFS(int k, int id)
    {
    	if(id > m){
    		double tmp = prim();
    		if(tmp - ans < -(1e-8)){
    			ans = tmp; memcpy(store, vis, sizeof(vis));
    		}
    		return;
    	}
    	for(int i = k; i <= n; ++i){
    		vis[id] = i;
    		DFS(i + 1, id + 1);
    	}
    }
    
    int main()
    {
    	int i, j;
    	while(scanf("%d%d", &n, &m), n || m){
    		for(i = 1; i <= n; ++i) scanf("%d", &node[i]);
    		for(i = 1; i <= n; ++i)
    			for(j = 1; j <= n; ++j)
    				scanf("%d", &map[i][j]);
    		ans = INT_MAX;
    		DFS(1, 1);
    		for(i = 1; i <= m; ++i)
    			if(i != m) printf("%d ", store[i]);
    			else printf("%d
    ", store[i]);
    	}
    	return 0;
    }


  • 相关阅读:
    🏆【Java技术专区】「编译器专题」彻底你明白什么是JIT编译器(Just In Time编译器)
    Sql server日期函数用法
    Oracle 11g密码过期问题及解决方案
    该驱动程序不支持 SQL Server 8 版
    maven添加sqlserver的jdbc驱动包
    com.microsoft.sqlserver.jdbc.SQLServerException: 对象名 ‘DUAL‘ 无效 | Druid双数据源MySQL+SQL server
    用Java连接SQL Server2000数据库的两种方法与jDTS
    无法远程连接Sql Server 2000解决方案
    为 SQL Server 2000 数据库添加用户名和密码
    Oracle的number数据类型
  • 原文地址:https://www.cnblogs.com/slgkaifa/p/6877805.html
Copyright © 2020-2023  润新知