• Kruskal算法(三)之 Java详解


    前面分别通过C和C++实现了克鲁斯卡尔,本文介绍克鲁斯卡尔的Java实现。

    目录
    1. 最小生成树
    2. 克鲁斯卡尔算法介绍
    3. 克鲁斯卡尔算法图解
    4. 克鲁斯卡尔算法分析
    5. 克鲁斯卡尔算法的代码说明
    6. 克鲁斯卡尔算法的源码

    转载请注明出处:http://www.cnblogs.com/skywang12345/

    更多内容:数据结构与算法系列 目录

    最小生成树

    在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。

    例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。

    克鲁斯卡尔算法介绍

    克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。

    基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。
    具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。

    克鲁斯卡尔算法图解

    以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

    第1步:将边<E,F>加入R中。
        边<E,F>的权值最小,因此将它加入到最小生成树结果R中。
    第2步:将边<C,D>加入R中。
        上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。
    第3步:将边<D,E>加入R中。
        上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。
    第4步:将边<B,F>加入R中。
        上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。
    第5步:将边<E,G>加入R中。
        上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。
    第6步:将边<A,B>加入R中。
        上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。

    此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>

    克鲁斯卡尔算法分析

    根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
    问题一 对图的所有边按照权值大小进行排序。
    问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。

    问题一很好解决,采用排序算法进行排序即可。

    问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"(关于这一点,后面会通过图片给出说明)。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。 以下图来进行说明:

    在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:

    (01) C的终点是F。
    (02) D的终点是F。
    (03) E的终点是F。
    (04) F的终点是F。

    关于终点,就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。 因此,接下来,虽然<C,E>是权值最小的边。但是C和E的重点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。

    克鲁斯卡尔算法的代码说明

    有了前面的算法分析之后,下面我们来查看具体代码。这里选取"邻接矩阵"进行说明,对于"邻接表"实现的图在后面的源码中会给出相应的源码。

    1. 基本定义

    // 边的结构体
    private static class EData {
        char start; // 边的起点
        char end;   // 边的终点
        int weight; // 边的权重
    
        public EData(char start, char end, int weight) {
            this.start = start;
            this.end = end;
            this.weight = weight;
        }
    };
    

    EData是邻接矩阵边对应的结构体。

    public class MatrixUDG {
    
        private int mEdgNum;        // 边的数量
        private char[] mVexs;       // 顶点集合
        private int[][] mMatrix;    // 邻接矩阵
        private static final int INF = Integer.MAX_VALUE;   // 最大值
    
        ...
    }
    

    MatrixUDG是邻接矩阵对应的结构体。mVexs用于保存顶点,mEdgNum用于保存边数,mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

    2. 克鲁斯卡尔算法

    /*
     * 克鲁斯卡尔(Kruskal)最小生成树
     */
    public void kruskal() {
        int index = 0;                      // rets数组的索引
        int[] vends = new int[mEdgNum];     // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
        EData[] rets = new EData[mEdgNum];  // 结果数组,保存kruskal最小生成树的边
        EData[] edges;                      // 图对应的所有边
    
        // 获取"图中所有的边"
        edges = getEdges();
        // 将边按照"权"的大小进行排序(从小到大)
        sortEdges(edges, mEdgNum);
    
        for (int i=0; i<mEdgNum; i++) {
            int p1 = getPosition(edges[i].start);      // 获取第i条边的"起点"的序号
            int p2 = getPosition(edges[i].end);        // 获取第i条边的"终点"的序号
    
            int m = getEnd(vends, p1);                 // 获取p1在"已有的最小生成树"中的终点
            int n = getEnd(vends, p2);                 // 获取p2在"已有的最小生成树"中的终点
            // 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
            if (m != n) {
                vends[m] = n;                       // 设置m在"已有的最小生成树"中的终点为n
                rets[index++] = edges[i];           // 保存结果
            }
        }
    
        // 统计并打印"kruskal最小生成树"的信息
        int length = 0;
        for (int i = 0; i < index; i++)
            length += rets[i].weight;
        System.out.printf("Kruskal=%d: ", length);
        for (int i = 0; i < index; i++)
            System.out.printf("(%c,%c) ", rets[i].start, rets[i].end);
        System.out.printf("
    ");
    }
    

    克鲁斯卡尔算法的源码

    这里分别给出"邻接矩阵图"和"邻接表图"的克鲁斯卡尔算法源码。

    1. 邻接矩阵源码(MatrixUDG.java)

    2. 邻接表源码(ListUDG.java)

  • 相关阅读:
    IE hasLayout详解
    seajs引入jquery
    jquery实现轮播插件
    CSS视觉格式化模型
    js事件冒泡和事件捕获详解
    你尽力了么===BY cloudsky
    前向否定界定符 python正则表达式不匹配某个字符串 以及无捕获组和命名组(转)
    php safe mode bypass all <转>
    WAF指纹探测及识别技术<freebuf>
    linux集群管理<转>
  • 原文地址:https://www.cnblogs.com/skywang12345/p/3711504.html
Copyright © 2020-2023  润新知