• 【图像算法】七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)


    图像算法:图像阈值分割

    SkySeraph Dec 21st 2010  HQU

    Email:zgzhaobo@gmail.com    QQ:452728574

    Latest Modified Date:Dec.21st 2010 HQU

    更多精彩请直接访问SkySeraph个人站点www.skyseraph.com 

     图像算法系列: http://skyseraph.com/2011/08/27/CV/图像算法专题/ 

    一、工具:VC+OpenCV

    二、语言:C++

    三、原理(略)

    四、程序

    主程序(核心部分) 

    代码
    1 /*===============================图像分割=====================================*/
    2 /*---------------------------------------------------------------------------*/
    3 /*手动设置阀值*/
    4 IplImage* binaryImg = cvCreateImage(cvSize(w, h),IPL_DEPTH_8U, 1);
    5 cvThreshold(smoothImgGauss,binaryImg,71,255,CV_THRESH_BINARY);
    6 cvNamedWindow("cvThreshold", CV_WINDOW_AUTOSIZE );
    7 cvShowImage( "cvThreshold", binaryImg );
    8 //cvReleaseImage(&binaryImg);
    9  /*---------------------------------------------------------------------------*/
    10 /*自适应阀值 //计算像域邻域的平均灰度,来决定二值化的值*/
    11 IplImage* adThresImg = cvCreateImage(cvSize(w, h),IPL_DEPTH_8U, 1);
    12 double max_value=255;
    13 int adpative_method=CV_ADAPTIVE_THRESH_GAUSSIAN_C;//CV_ADAPTIVE_THRESH_MEAN_C
    14  int threshold_type=CV_THRESH_BINARY;
    15 int block_size=3;//阈值的象素邻域大小
    16  int offset=5;//窗口尺寸
    17   cvAdaptiveThreshold(smoothImgGauss,adThresImg,max_value,adpative_method,threshold_type,block_size,offset);
    18 cvNamedWindow("cvAdaptiveThreshold", CV_WINDOW_AUTOSIZE );
    19 cvShowImage( "cvAdaptiveThreshold", adThresImg );
    20 cvReleaseImage(&adThresImg);
    21 /*---------------------------------------------------------------------------*/
    22 /*最大熵阀值分割法*/
    23 IplImage* imgMaxEntropy = cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,1);
    24 MaxEntropy(smoothImgGauss,imgMaxEntropy);
    25 cvNamedWindow("MaxEntroyThreshold", CV_WINDOW_AUTOSIZE );
    26 cvShowImage( "MaxEntroyThreshold", imgMaxEntropy );//显示图像
    27   cvReleaseImage(&imgMaxEntropy );
    28 /*---------------------------------------------------------------------------*/
    29 /*基本全局阀值法*/
    30 IplImage* imgBasicGlobalThreshold = cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,1);
    31 cvCopyImage(srcImgGrey,imgBasicGlobalThreshold);
    32 int pg[256],i,thre;
    33 for (i=0;i<256;i++) pg[i]=0;
    34 for (i=0;i<imgBasicGlobalThreshold->imageSize;i++) // 直方图统计
    35   pg[(BYTE)imgBasicGlobalThreshold->imageData[i]]++;
    36 thre = BasicGlobalThreshold(pg,0,256); // 确定阈值
    37   cout<<"The Threshold of this Image in BasicGlobalThreshold is:"<<thre<<endl;//输出显示阀值
    38   cvThreshold(imgBasicGlobalThreshold,imgBasicGlobalThreshold,thre,255,CV_THRESH_BINARY); // 二值化
    39   cvNamedWindow("BasicGlobalThreshold", CV_WINDOW_AUTOSIZE );
    40 cvShowImage( "BasicGlobalThreshold", imgBasicGlobalThreshold);//显示图像
    41   cvReleaseImage(&imgBasicGlobalThreshold);
    42 /*---------------------------------------------------------------------------*/
    43 /*OTSU*/
    44 IplImage* imgOtsu = cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,1);
    45 cvCopyImage(srcImgGrey,imgOtsu);
    46 int thre2;
    47 thre2 = otsu2(imgOtsu);
    48 cout<<"The Threshold of this Image in Otsu is:"<<thre2<<endl;//输出显示阀值
    49 cvThreshold(imgOtsu,imgOtsu,thre2,255,CV_THRESH_BINARY); // 二值化
    50 cvNamedWindow("imgOtsu", CV_WINDOW_AUTOSIZE );
    51 cvShowImage( "imgOtsu", imgOtsu);//显示图像
    52 cvReleaseImage(&imgOtsu);
    53 /*---------------------------------------------------------------------------*/
    54 /*上下阀值法:利用正态分布求可信区间*/
    55 IplImage* imgTopDown = cvCreateImage( cvGetSize(imgGrey), IPL_DEPTH_8U, 1 );
    56 cvCopyImage(srcImgGrey,imgTopDown);
    57 CvScalar mean ,std_dev;//平均值、 标准差
    58 double u_threshold,d_threshold;
    59 cvAvgSdv(imgTopDown,&mean,&std_dev,NULL);
    60 u_threshold = mean.val[0] +2.5* std_dev.val[0];//上阀值
    61 d_threshold = mean.val[0] -2.5* std_dev.val[0];//下阀值
    62 //u_threshold = mean + 2.5 * std_dev; //错误
    63 //d_threshold = mean - 2.5 * std_dev;
    64 cout<<"The TopThreshold of this Image in TopDown is:"<<d_threshold<<endl;//输出显示阀值
    65 cout<<"The DownThreshold of this Image in TopDown is:"<<u_threshold<<endl;
    66 cvThreshold(imgTopDown,imgTopDown,d_threshold,u_threshold,CV_THRESH_BINARY_INV);//上下阀值
    67 cvNamedWindow("imgTopDown", CV_WINDOW_AUTOSIZE );
    68 cvShowImage( "imgTopDown", imgTopDown);//显示图像
    69 cvReleaseImage(&imgTopDown);
    70 /*---------------------------------------------------------------------------*/
    71 /*迭代法*/
    72 IplImage* imgIteration = cvCreateImage( cvGetSize(imgGrey), IPL_DEPTH_8U, 1 );
    73 cvCopyImage(srcImgGrey,imgIteration);
    74 int thre3,nDiffRec;
    75 thre3 =DetectThreshold(imgIteration, 100, nDiffRec);
    76 cout<<"The Threshold of this Image in imgIteration is:"<<thre3<<endl;//输出显示阀值
    77 cvThreshold(imgIteration,imgIteration,thre3,255,CV_THRESH_BINARY_INV);//上下阀值
    78 cvNamedWindow("imgIteration", CV_WINDOW_AUTOSIZE );
    79 cvShowImage( "imgIteration", imgIteration);
    80 cvReleaseImage(&imgIteration);

    模块程序

    迭代法

    代码
    1 /*======================================================================*/
    2 /* 迭代法*/
    3 /*======================================================================*/
    4 // nMaxIter:最大迭代次数;nDiffRec:使用给定阀值确定的亮区与暗区平均灰度差异值
    5 int DetectThreshold(IplImage*img, int nMaxIter, int& iDiffRec) //阀值分割:迭代法
    6 {
    7 //图像信息
    8 int height = img->height;
    9 int width = img->width;
    10 int step = img->widthStep/sizeof(uchar);
    11 uchar *data = (uchar*)img->imageData;
    12
    13 iDiffRec =0;
    14 int F[256]={ 0 }; //直方图数组
    15 int iTotalGray=0;//灰度值和
    16 int iTotalPixel =0;//像素数和
    17 byte bt;//某点的像素值
    18
    19 uchar iThrehold,iNewThrehold;//阀值、新阀值
    20 uchar iMaxGrayValue=0,iMinGrayValue=255;//原图像中的最大灰度值和最小灰度值
    21 uchar iMeanGrayValue1,iMeanGrayValue2;
    22
    23 //获取(i,j)的值,存于直方图数组F
    24 for(int i=0;i<width;i++)
    25 {
    26 for(int j=0;j<height;j++)
    27 {
    28 bt = data[i*step+j];
    29 if(bt<iMinGrayValue)
    30 iMinGrayValue = bt;
    31 if(bt>iMaxGrayValue)
    32 iMaxGrayValue = bt;
    33 F[bt]++;
    34 }
    35 }
    36
    37 iThrehold =0;//
    38 iNewThrehold = (iMinGrayValue+iMaxGrayValue)/2;//初始阀值
    39 iDiffRec = iMaxGrayValue - iMinGrayValue;
    40
    41 for(int a=0;(abs(iThrehold-iNewThrehold)>0.5)&&a<nMaxIter;a++)//迭代中止条件
    42 {
    43 iThrehold = iNewThrehold;
    44 //小于当前阀值部分的平均灰度值
    45 for(int i=iMinGrayValue;i<iThrehold;i++)
    46 {
    47 iTotalGray += F[i]*i;//F[]存储图像信息
    48 iTotalPixel += F[i];
    49 }
    50 iMeanGrayValue1 = (uchar)(iTotalGray/iTotalPixel);
    51 //大于当前阀值部分的平均灰度值
    52 iTotalPixel =0;
    53 iTotalGray =0;
    54 for(int j=iThrehold+1;j<iMaxGrayValue;j++)
    55 {
    56 iTotalGray += F[j]*j;//F[]存储图像信息
    57 iTotalPixel += F[j];
    58 }
    59 iMeanGrayValue2 = (uchar)(iTotalGray/iTotalPixel);
    60
    61 iNewThrehold = (iMeanGrayValue2+iMeanGrayValue1)/2; //新阀值
    62 iDiffRec = abs(iMeanGrayValue2 - iMeanGrayValue1);
    63 }
    64
    65 //cout<<"The Threshold of this Image in imgIteration is:"<<iThrehold<<endl;
    66 return iThrehold;
    67 }
    68

      

    Otsu代码一 

    代码
    1 /*======================================================================*/
    2 /* OTSU global thresholding routine */
    3 /* takes a 2D unsigned char array pointer, number of rows, and */
    4 /* number of cols in the array. returns the value of the threshold */
    5 /*parameter:
    6 *image --- buffer for image
    7 rows, cols --- size of image
    8 x0, y0, dx, dy --- region of vector used for computing threshold
    9 vvv --- debug option, is 0, no debug information outputed
    10 */
    11 /*
    12 OTSU 算法可以说是自适应计算单阈值(用来转换灰度图像为二值图像)的简单高效方法。
    13 下面的代码最早由 Ryan Dibble提供,此后经过多人Joerg.Schulenburg, R.Z.Liu 等修改,补正。
    14 算法对输入的灰度图像的直方图进行分析,将直方图分成两个部分,使得两部分之间的距离最大。
    15 划分点就是求得的阈值。
    16 */
    17 /*======================================================================*/
    18 int otsu (unsigned char*image, int rows, int cols, int x0, int y0, int dx, int dy, int vvv)
    19 {
    20
    21 unsigned char*np; // 图像指针
    22 int thresholdValue=1; // 阈值
    23 int ihist[256]; // 图像直方图,256个点
    24
    25 int i, j, k; // various counters
    26 int n, n1, n2, gmin, gmax;
    27 double m1, m2, sum, csum, fmax, sb;
    28
    29 // 对直方图置零
    30 memset(ihist, 0, sizeof(ihist));
    31
    32 gmin=255; gmax=0;
    33 // 生成直方图
    34 for (i = y0 +1; i < y0 + dy -1; i++)
    35 {
    36 np = (unsigned char*)image[i*cols+x0+1];
    37 for (j = x0 +1; j < x0 + dx -1; j++)
    38 {
    39 ihist[*np]++;
    40 if(*np > gmax) gmax=*np;
    41 if(*np < gmin) gmin=*np;
    42 np++; /* next pixel */
    43 }
    44 }
    45
    46 // set up everything
    47 sum = csum =0.0;
    48 n =0;
    49
    50 for (k =0; k <=255; k++)
    51 {
    52 sum += (double) k * (double) ihist[k]; /* x*f(x) 质量矩*/
    53 n += ihist[k]; /* f(x) 质量 */
    54 }
    55
    56 if (!n)
    57 {
    58 // if n has no value, there is problems...
    59 fprintf (stderr, "NOT NORMAL thresholdValue = 160\n");
    60 return (160);
    61 }
    62
    63 // do the otsu global thresholding method
    64 fmax =-1.0;
    65 n1 =0;
    66 for (k =0; k <255; k++)
    67 {
    68 n1 += ihist[k];
    69 if (!n1)
    70 {
    71 continue;
    72 }
    73 n2 = n - n1;
    74 if (n2 ==0)
    75 {
    76 break;
    77 }
    78 csum += (double) k *ihist[k];
    79 m1 = csum / n1;
    80 m2 = (sum - csum) / n2;
    81 sb = (double) n1 *(double) n2 *(m1 - m2) * (m1 - m2);
    82 /* bbg: note: can be optimized. */
    83 if (sb > fmax)
    84 {
    85 fmax = sb;
    86 thresholdValue = k;
    87 }
    88 }
    89
    90 // at this point we have our thresholding value
    91
    92 // debug code to display thresholding values
    93 if ( vvv &1 )
    94 fprintf(stderr,"# OTSU: thresholdValue = %d gmin=%d gmax=%d\n",
    95 thresholdValue, gmin, gmax);
    96
    97 return(thresholdValue);
    98 }

    Otsu代码二 

    代码
    1 /*======================================================================*/
    2 /* OTSU global thresholding routine */
    3 /*======================================================================*/
    4 int otsu2 (IplImage *image)
    5 {
    6 int w = image->width;
    7 int h = image->height;
    8
    9 unsigned char*np; // 图像指针
    10 unsigned char pixel;
    11 int thresholdValue=1; // 阈值
    12 int ihist[256]; // 图像直方图,256个点
    13
    14 int i, j, k; // various counters
    15 int n, n1, n2, gmin, gmax;
    16 double m1, m2, sum, csum, fmax, sb;
    17
    18 // 对直方图置零...
    19 memset(ihist, 0, sizeof(ihist));
    20
    21 gmin=255; gmax=0;
    22 // 生成直方图
    23 for (i =0; i < h; i++)
    24 {
    25 np = (unsigned char*)(image->imageData + image->widthStep*i);
    26 for (j =0; j < w; j++)
    27 {
    28 pixel = np[j];
    29 ihist[ pixel]++;
    30 if(pixel > gmax) gmax= pixel;
    31 if(pixel < gmin) gmin= pixel;
    32 }
    33 }
    34
    35 // set up everything
    36 sum = csum =0.0;
    37 n =0;
    38
    39 for (k =0; k <=255; k++)
    40 {
    41 sum += k * ihist[k]; /* x*f(x) 质量矩*/
    42 n += ihist[k]; /* f(x) 质量 */
    43 }
    44
    45 if (!n)
    46 {
    47 // if n has no value, there is problems...
    48 //fprintf (stderr, "NOT NORMAL thresholdValue = 160\n");
    49 thresholdValue =160;
    50 goto L;
    51 }
    52
    53 // do the otsu global thresholding method
    54 fmax =-1.0;
    55 n1 =0;
    56 for (k =0; k <255; k++)
    57 {
    58 n1 += ihist[k];
    59 if (!n1) { continue; }
    60 n2 = n - n1;
    61 if (n2 ==0) { break; }
    62 csum += k *ihist[k];
    63 m1 = csum / n1;
    64 m2 = (sum - csum) / n2;
    65 sb = n1 * n2 *(m1 - m2) * (m1 - m2);
    66 /* bbg: note: can be optimized. */
    67 if (sb > fmax)
    68 {
    69 fmax = sb;
    70 thresholdValue = k;
    71 }
    72 }
    73
    74 L:
    75 for (i =0; i < h; i++)
    76 {
    77 np = (unsigned char*)(image->imageData + image->widthStep*i);
    78 for (j =0; j < w; j++)
    79 {
    80 if(np[j] >= thresholdValue)
    81 np[j] =255;
    82 else np[j] =0;
    83 }
    84 }
    85
    86 //cout<<"The Threshold of this Image in Otsu is:"<<thresholdValue<<endl;
    87 return(thresholdValue);
    88 }

     

    最大熵阀值 

    代码
    1 /*============================================================================
    2 = 代码内容:最大熵阈值分割
    3 = 修改日期:2009-3-3
    4 = 作者:crond123
    5 = 博客:http://blog.csdn.net/crond123/
    6 = E_Mail:crond123@163.com
    7 ===============================================================================*/
    8 // 计算当前位置的能量熵
    9 double caculateCurrentEntropy(CvHistogram * Histogram1,int cur_threshold,entropy_state state)
    10 {
    11 int start,end;
    12 int total =0;
    13 double cur_entropy =0.0;
    14 if(state == back)
    15 {
    16 start =0;
    17 end = cur_threshold;
    18 }
    19 else
    20 {
    21 start = cur_threshold;
    22 end =256;
    23 }
    24 for(int i=start;i<end;i++)
    25 {
    26 total += (int)cvQueryHistValue_1D(Histogram1,i);//查询直方块的值 P304
    27 }
    28 for(int j=start;j<end;j++)
    29 {
    30 if((int)cvQueryHistValue_1D(Histogram1,j)==0)
    31 continue;
    32 double percentage = cvQueryHistValue_1D(Histogram1,j)/total;
    33 /*熵的定义公式*/
    34 cur_entropy +=-percentage*logf(percentage);
    35 /*根据泰勒展式去掉高次项得到的熵的近似计算公式
    36 cur_entropy += percentage*percentage;*/
    37 }
    38 return cur_entropy;
    39 // return (1-cur_entropy);
    40 }
    41
    42 //寻找最大熵阈值并分割
    43 void MaxEntropy(IplImage *src,IplImage *dst)
    44 {
    45 assert(src != NULL);
    46 assert(src->depth ==8&& dst->depth ==8);
    47 assert(src->nChannels ==1);
    48 CvHistogram * hist = cvCreateHist(1,&HistogramBins,CV_HIST_ARRAY,HistogramRange);//创建一个指定尺寸的直方图
    49 //参数含义:直方图包含的维数、直方图维数尺寸的数组、直方图的表示格式、方块范围数组、归一化标志
    50 cvCalcHist(&src,hist);//计算直方图
    51 double maxentropy =-1.0;
    52 int max_index =-1;
    53 // 循环测试每个分割点,寻找到最大的阈值分割点
    54 for(int i=0;i<HistogramBins;i++)
    55 {
    56 double cur_entropy = caculateCurrentEntropy(hist,i,object)+caculateCurrentEntropy(hist,i,back);
    57 if(cur_entropy>maxentropy)
    58 {
    59 maxentropy = cur_entropy;
    60 max_index = i;
    61 }
    62 }
    63 cout<<"The Threshold of this Image in MaxEntropy is:"<<max_index<<endl;
    64 cvThreshold(src, dst, (double)max_index,255, CV_THRESH_BINARY);
    65 cvReleaseHist(&hist);
    66 }

    基本全局阀值法 

    代码
    1 /*============================================================================
    2 = 代码内容:基本全局阈值法
    3 ==============================================================================*/
    4 int BasicGlobalThreshold(int*pg,int start,int end)
    5 { // 基本全局阈值法
    6 int i,t,t1,t2,k1,k2;
    7 double u,u1,u2;
    8 t=0;
    9 u=0;
    10 for (i=start;i<end;i++)
    11 {
    12 t+=pg[i];
    13 u+=i*pg[i];
    14 }
    15 k2=(int) (u/t); // 计算此范围灰度的平均值
    16 do
    17 {
    18 k1=k2;
    19 t1=0;
    20 u1=0;
    21 for (i=start;i<=k1;i++)
    22 { // 计算低灰度组的累加和
    23 t1+=pg[i];
    24 u1+=i*pg[i];
    25 }
    26 t2=t-t1;
    27 u2=u-u1;
    28 if (t1)
    29 u1=u1/t1; // 计算低灰度组的平均值
    30 else
    31 u1=0;
    32 if (t2)
    33 u2=u2/t2; // 计算高灰度组的平均值
    34 else
    35 u2=0;
    36 k2=(int) ((u1+u2)/2); // 得到新的阈值估计值
    37 }
    38 while(k1!=k2); // 数据未稳定,继续
    39 //cout<<"The Threshold of this Image in BasicGlobalThreshold is:"<<k1<<endl;
    40 return(k1); // 返回阈值
    41 }

    五 效果(略)

     

    Author:         SKySeraph

    Email/GTalk: zgzhaobo@gmail.com    QQ:452728574

    From:         http://www.cnblogs.com/skyseraph/

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,请尊重作者的劳动成果。


    作者:skyseraph
    出处:http://www.cnblogs.com/skyseraph/
    更多精彩请直接访问SkySeraph个人站点:http://skyseraph.com//
    Email/GTalk: zgzhaobo@gmail.com
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

  • 相关阅读:
    vs2008支持ajax extender控件
    ComponentArt控件分析之CallBack(1)
    asp.net控件开发技巧(2)关闭基类不必要的功能
    asp.net控件开发技巧(1)使用HtmlTextWriter类规范输出标签
    开了一论坛,专门讨论控件技术
    出来透个气
    道歉
    Kubuntu 9.10 Karmic Koala 预览
    让Nginx 的URL目录自动加斜线”/”
    Nginx的Rewrite正则表达式,匹配非某单词
  • 原文地址:https://www.cnblogs.com/skyseraph/p/1913058.html
Copyright © 2020-2023  润新知