• win10下机器学习TensorFlow搭建


    之前在网上查找了很多资料,试了无数次,尤其是Anaconda,反复安装删除了无数次。昨天忙活了一天,安装失败,今天终于成功。

    特此记录。安装好后,在pycharm IDE下也可以顺利运行了。下面的是在自己电脑上的测试:

    主要是参考下面这篇文章,十分感谢作者:

    windows深度学习入门(1)在windows10上安装TensorFlow

    标签: windowscudapython深度学习
    分类:

    主要步骤:首先安装python和pip,再通过pip安装tensorflow,如果是安装CPU版本的非常简单,如果安装GPU版本的话,还需要再安装CUDA和CuDNN。

    另外,自己在按照此篇博客安装之前,已经装好了anaconda,应该也是需要的,不太确定。

    1.安装python与pip,由于我之前的python是python 3.6,然而python是支持python3.5的,一开始在某些无良博客看的教程都没有提到这一点,后来看了官方教程才明白必须要是64位python 3.5(注意不是32位!)。安装python的过程不难,由于现在版本的pip是可以和python一起安装的,因此在安装python的时候一定要注意把pip那一项勾选上,(python3.5安装时候,用的是自定义安装,那里自动勾划了pip选项,可以看到)首先在网上找到安装包(我是在CSDN上下载的),下载之后自己选一个路径安装即可,我的路径是D:python3.5.2,之后python就安装成功了,如图所示,pip就安装在Scripts中。
    安装好python之后与pip之后

    但是只是安装好还不够,因为python和pip是依赖于环境变量来运行的,所谓的环境变量是什么意思呢?我的理解是,你使用python的时候,在命令行里输入python + 要解释的程序的名字,但是系统是不知道你这一句python是什么意思的,同样的,你输入pip命令安装一些包的时候,系统也没办法识别pip是什么,所以就需要提前告诉系统一声,让它在某几个路径里去找,使用过gcc或者g++的朋友对这个一定很熟悉,因为gcc和g++也需要配置环境变量。
    这里写图片描述

    这里写图片描述

    2.安装TensorFlow
    有两种安装方式,一种是在CPU上安装,另一种是在GPU上安装,因为我的显卡是NVIDIA的,而且采用GPU会更快一些,因此我采用的是在GPU上安装,需要先安装两个东西:

    1、CUDA:https://developer.nvidia.com/cuda-downloads
    2、CuDNN:https://developer.nvidia.com/cudnn

    首先下载好CUDA安装之后,记得把CUDA的路径放到环境变量里面,安装CuDNN的时候,解压之后发现有include、bin和lib三个文件,把内容放到CUDA对应的文件里面就可以了!
    安装好之后,GPU的安装和CPU的安装就基本一样了,在命令行中输入命令即可:
    安装CPU版本:

    pip install --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-0.12.0rc0-cp35-cp35m-win_amd64.whl
    • 1

    安装GPU版本:

    pip install --upgrade https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-0.12.0rc0-cp35-cp35m-win_amd64.whl 
    • 1

    不过这看似简单的一步浪费了我好多时间,无论我选择在CPU上安装还是在GPU上安装,都会提示is not a supported wheel on this platform
    这个时候我们如果打开命令行,先输入python打开python,再输入import pip加载pip模块,输入print(pip.pep425tags.get_supported())就会发现,你的pip是不支持3.5版本的,也就是说,pip没有办法识别你的whl格式的文件。这个时候输入一条命令pip install wheel然后再输入之前的命令就会发现已经安装好啦!
    接下来我对TensorFlow官方文档的程序进行了测试,首先我测试了一下比较简单的乘法程序,主要是将两个矩阵相乘:

    import tensorflow as tf
    
    matrix1=tf.constant([[5,6]])
    matrix2=tf.constant([[1],[1]])
    
    product=tf.matmul(matrix2,matrix1)
    
    sess=tf.Session()
    result=sess.run(product)
    print(result)
    • 1

    结果如图这里写图片描述
    接下来我又测试了TensorFlow文档开篇提供的程序:

    import tensorflow as tf
    import numpy as np
    
    x_data = np.float32(np.random.rand(2, 100))
    y_data = np.dot([0.100, 0.200], x_data) + 0.300
    
    b = tf.Variable(tf.zeros([1]))
    W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
    y = tf.matmul(W, x_data) + b
    
    loss = tf.reduce_mean(tf.square(y - y_data))
    optimizer = tf.train.GradientDescentOptimizer(0.5)
    train = optimizer.minimize(loss)
    
    init = tf.global_variables_initializer()
    
    sess = tf.Session()
    sess.run(init)
    
    for step in range(0, 201):
        sess.run(train)
        if step % 20 == 0:
            print (step, sess.run(W), sess.run(b))
    • 1

    但是出现错误:
    CUDA version is insufficient for CUDA runtime version
    出现了这个之后还出现了一大篇Failed,看来是CUDA的驱动版本不够高导致的,于是我到了NVIDIA的官网上按照我的电脑版本更新了驱动(我的是windows10_64位)。
    再运行,结果如下:
    这里写图片描述
    这说明我们的程序成功运行了,TensorFlow安装成功!
    以上是我在安装的时候出现的问题,如果还有其它的情况,欢迎大家在评论区留言!

  • 相关阅读:
    C# decimal保留指定的小数位数,不四舍五入
    C# :实现水印与图片合成,并利用Graphics 压缩图像质量 , (委托实现listBox的动态添加提示)
    手机游戏模拟器汇总 用于开发
    WinAPI 操作串口
    C#图片压缩算法
    SQL SERVER 2008 无法启动TSQL调试的解决方法
    C#放缩、截取、合并图片并生成高质量新图的类
    C#图片处理之: 另存为压缩质量可自己控制的JPEG
    URL及short URL短网址
    1的补码及2的补码
  • 原文地址:https://www.cnblogs.com/skylover/p/7400503.html
Copyright © 2020-2023  润新知