[JOISC2014]歴史の研究/[BZOJ4241]历史研究
题目大意:
一个长度为(n(nle10^5))的数列(A(A_ile10^9)),定义一个元素对一个区间([l,r])的贡献为(A_i imes cnt(A_i)),其中(cnt(A_i))表示(A_i)在区间内的出现次数。(q(qle10^5))次询问,每次询问一个区间内贡献最大的元素的贡献。
思路:
分块。
(cnt[i][j])表示前(i)块内(j)的出现次数,(sum[i][j])表示([begin(i),end(j)])的答案。
对(A)离散化后预处理(cnt)和(sum),询问时如果(l,r)在同一块直接暴力。如果不在同一块,则答案要么是(sum[bel(l)+1,bel(r)-1]),要么是(l,r)所在块中出现过的元素的贡献。
时间复杂度(mathcal O(n^{frac32}))。
源代码:
#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=1e5,M=317;
int n,m,q,block,a[N],b[N],bel[N],begin[M],end[M],tmp[N],cnt[M][N];
int64 sum[M][M];
inline int64 query(const int &l,const int &r) {
int64 ret=0;
if(bel[l]==bel[r]) {
for(register int i=l;i<=r;i++) {
tmp[a[i]]++;
ret=std::max(ret,(int64)b[a[i]]*tmp[a[i]]);
}
for(register int i=l;i<=r;i++) tmp[a[i]]--;
return ret;
}
ret=sum[bel[l]+1][bel[r]-1];
for(register int i=l;i<=end[bel[l]];i++) {
tmp[a[i]]++;
ret=std::max(ret,(int64)b[a[i]]*(tmp[a[i]]+cnt[bel[r]-1][a[i]]-cnt[bel[l]][a[i]]));
}
for(register int i=begin[bel[r]];i<=r;i++) {
tmp[a[i]]++;
ret=std::max(ret,(int64)b[a[i]]*(tmp[a[i]]+cnt[bel[r]-1][a[i]]-cnt[bel[l]][a[i]]));
}
for(register int i=l;i<=end[bel[l]];i++) tmp[a[i]]--;
for(register int i=begin[bel[r]];i<=r;i++) tmp[a[i]]--;
return ret;
}
int main() {
n=getint(),q=getint(),block=sqrt(n);
for(register int i=0;i<n;i++) {
a[i]=b[i]=getint();
bel[i]=i/block;
end[bel[i]]=i;
}
for(register int i=n-1;i>=0;i--) {
begin[bel[i]]=i;
}
std::sort(&b[0],&b[n]);
m=std::unique(&b[0],&b[n])-b;
for(register int i=0;i<n;i++) {
a[i]=std::lower_bound(&b[0],&b[m],a[i])-b;
cnt[bel[i]][a[i]]++;
}
for(register int i=1;i<=bel[n-1];i++) {
for(register int j=0;j<m;j++) {
cnt[i][j]+=cnt[i-1][j];
}
}
for(register int i=0;i<=bel[n-1];i++) {
for(register int j=begin[i];j<=end[i];j++) {
tmp[a[j]]++;
sum[i][i]=std::max(sum[i][i],(int64)b[a[j]]*tmp[a[j]]);
}
for(register int j=begin[i];j<=end[i];j++) tmp[a[j]]--;
for(register int j=i+1;j<=bel[n-1];j++) {
sum[i][j]=sum[i][j-1];
for(register int k=begin[j];k<=end[j];k++) {
tmp[a[k]]++;
sum[i][j]=std::max(sum[i][j],(int64)b[a[k]]*(tmp[a[k]]+cnt[j-1][a[k]]-(i!=0?cnt[i-1][a[k]]:0)));
}
for(register int k=begin[j];k<=end[j];k++) tmp[a[k]]--;
}
}
for(register int i=0;i<q;i++) {
const int l=getint()-1,r=getint()-1;
printf("%lld
",query(l,r));
}
return 0;
}