• [HNOI/AHOI2017]影魔


    [HNOI/AHOI2017]影魔

    题目大意:

    有一排(n(nle2 imes10^5))个数(k_{1sim n})。对于点对((i,j)),若不存在(k_s(i<s<j))大于(k_i)(k_j), 则对答案造成(p_1)的贡献;若(c=max_{sin(i,j)}{k_s})满足(k_i<c<k_j)(k_j<c<k_i)则对答案造成(p_2)的贡献。(m(mle2 imes10^5))次询问,每次询问区间([l,r])内所有点对对答案贡献之和。其中(k_i)(1sim n)的全排列。

    思路:

    首先预处理出对于每个点(i),其左侧第一个权值大于它的点(left[i])和其右侧第一个权值大于它的点(right[i])。显然这个点(i)对答案的贡献有(3)种情况:

    1. 对于点对((left[i],right[i])),贡献为(p_1)
    2. 对于所有点对((lin(left[i],i),right[i])),贡献为(p_2)
    3. 对于所有点对((left[i],rin(i,right[i]))),贡献为(p_2)

    我们可以离线处理所有询问。将询问和贡献分别排序,用树状数组维护答案即可。

    源代码:

    #include<cstdio>
    #include<cctype>
    #include<algorithm>
    typedef long long int64;
    inline int getint() {
    	register char ch;
    	while(!isdigit(ch=getchar()));
    	register int x=ch^'0';
    	while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
    	return x;
    }
    const int N=2e5+2,M=2e5;
    int64 ans[M];
    int n,m,p1,p2,w[N],left[N],right[N];
    struct Query {
    	int p,id,sgn,l,r;
    	bool operator < (const Query &rhs) const {
    		return p<rhs.p;
    	}
    };
    Query q[M*2];
    struct Modify {
    	int p,l,r,v;
    	bool operator < (const Modify &rhs) const {
    		return p<rhs.p;
    	}
    };
    Modify mo[M*3];
    class FenwickTree {
    	private:
    		int64 val1[N],val2[N];
    		int lowbit(const int &x) const {
    			return x&-x;
    		}
    	public:
    		void modify(const int &p,const int &x) {
    			for(register int i=p;i<=n;i+=lowbit(i)) {
    				val1[i]+=x;
    				val2[i]+=p*x;
    			}
    		}
    		int64 query(const int &p) const {
    			int64 ret=0;
    			for(register int i=p;i;i-=lowbit(i)) {
    				ret+=(p+1)*val1[i]-val2[i];
    			}
    			return ret;
    		}
    };
    FenwickTree t;
    class SegmentTree1 {
    	#define _left <<1
    	#define _right <<1|1
    	private:
    		int max[N<<2];
    		void push_up(const int &p) {
    			max[p]=std::max(max[p _left],max[p _right]);
    		}
    	public:
    		void modify(const int &p,const int &b,const int &e,const int &x,const int &v) {
    			if(b==e) {
    				max[p]=v;
    				return;
    			}
    			const int mid=(b+e)>>1;
    			if(x<=mid) modify(p _left,b,mid,x,v);
    			if(x>mid) modify(p _right,mid+1,e,x,v);
    			push_up(p);
    		}
    		int query(const int &p,const int &b,const int &e,const int &x) const {
    			if(b==e) return b;
    			const int mid=(b+e)>>1;
    			if(max[p _right]>x) return query(p _right,mid+1,e,x);
    			return query(p _left,b,mid,x);
    		}
    	#undef _left
    	#undef _right
    };
    SegmentTree1 st1;
    class SegmentTree2 {
    	#define _left <<1
    	#define _right <<1|1
    	private:
    		int max[N<<2];
    		void push_up(const int &p) {
    			max[p]=std::max(max[p _left],max[p _right]);
    		}
    	public:
    		void modify(const int &p,const int &b,const int &e,const int &x,const int &v) {
    			if(b==e) {
    				max[p]=v;
    				return;
    			}
    			const int mid=(b+e)>>1;
    			if(x<=mid) modify(p _left,b,mid,x,v);
    			if(x>mid) modify(p _right,mid+1,e,x,v);
    			push_up(p);
    		}
    		int query(const int &p,const int &b,const int &e,const int &x) const {
    			if(b==e) return b;
    			const int mid=(b+e)>>1;
    			if(max[p _left]>x) return query(p _left,b,mid,x);
    			return query(p _right,mid+1,e,x);
    		}
    	#undef _left
    	#undef _right
    };
    SegmentTree2 st2;
    int main() {
    	n=getint(),m=getint(),p1=getint(),p2=getint();
    	for(register int i=1;i<=n;i++) w[i]=getint();
    	for(register int i=1,pos=0;i<=n;i++) {
    		left[i]=w[i]<w[pos]?st1.query(1,1,n,w[i]):0;
    		if(w[i]>w[pos]) pos=i;
    		st1.modify(1,1,n,i,w[i]);
    	}
    	for(register int i=n,pos=n+1;i>=1;i--) {
    		right[i]=w[i]<w[pos]?st2.query(1,1,n,w[i]):n+1;
    		if(w[i]>w[pos]) pos=i;
    		st2.modify(1,1,n,i,w[i]);
    	}
    	for(register int i=0;i<m;i++) {
    		const int l=getint(),r=getint();
    		ans[i]=(r-l)*p1;
    		q[i*2]=(Query){l-1,i,-1,l,r};
    		q[i*2+1]=(Query){r,i,1,l,r};
    	}
    	std::sort(&q[0],&q[m*2]);
    	int cnt=0;
    	for(register int i=1;i<=n;i++) {
    		if(left[i]!=0&&right[i]!=n+1) mo[cnt++]=(Modify){right[i],left[i],left[i],p1};
    		if(left[i]!=0&&right[i]!=i+1) mo[cnt++]=(Modify){left[i],i+1,right[i]-1,p2};
    		if(left[i]!=i-1&&right[i]!=n+1) mo[cnt++]=(Modify){right[i],left[i]+1,i-1,p2};
    	}
    	std::sort(&mo[0],&mo[cnt]);
    	for(register int i=0,j=0;j<m*2;j++) {
    		for(;i<cnt&&mo[i].p<=q[j].p;i++) {
    			t.modify(mo[i].r+1,-mo[i].v);
    			t.modify(mo[i].l,mo[i].v);
    		}
    		ans[q[j].id]+=q[j].sgn*(t.query(q[j].r)-t.query(q[j].l-1));
    	}
    	for(register int i=0;i<m;i++) {
    		printf("%lld
    ",ans[i]);
    	}
    	return 0;
    }
    
  • 相关阅读:
    hive order、sort、distribute、cluster by区别与联系
    hive over窗口函数的使用
    hive中row_number() rank() dense_rank()的用法
    hive中文乱码问题
    hive分桶表的学习
    hive的调优经验
    Hive的学习
    hive grouping sets和GROUPING__ID的用法
    hive修复分区或修复表 以及msck命令的使用
    Vue中使用websocket
  • 原文地址:https://www.cnblogs.com/skylee03/p/9164391.html
Copyright © 2020-2023  润新知