• sharding sphere 4.0.0-RC1版本 按年分表(后续优化)


    1. sharding sphere 4.0.0-RC1版本 按年分表(后续优化)

    1.1. 概述

    关于上一篇中LogShardingAlgorithmtables,我原先是在第一次调用的时候初始化,这样做虽然能实现功能,但每次调用都会走这个if判断,虽然性能损耗不大,但我觉得这不是业务应该走的逻辑顺序,我的理想是在LogShardingAlgorithm被实例化后去自动初始化tables

    现在面对的问题是LogShardingAlgorithm的实例化是在Spring初始化中间执行的,且它本身的创建不是通过Spring的@Component等注解生成,而是通过反射实例化。若在实例化刚开始,也就是构造方法执行的时候执行初始化,那时候applicationContext还没有初始化完毕,拿不到环境参数,连Datasource也还没开始初始化

    1.2. 解决方法

    经过改造后,代码如下,单独拎出一个初始化方法,在类对象实例化后调用

    /**
     * @author: laoliangliang
     * @description: 日志分片
     * @create: 2020/1/2 10:19
     **/
    @Slf4j
    public class LogShardingAlgorithm implements PreciseShardingAlgorithm, RangeShardingAlgorithm<Integer> {
    
        /**
         * 缓存存在的表
         */
        private List<String> tables;
    
        private final String systemLogHead = "system_log_";
    
        public void init(){
            tables = DBUtil.getAllSystemLogTable();
        }
    
        @Override
        public String doSharding(Collection availableTargetNames, PreciseShardingValue shardingValue) {
            String target = shardingValue.getValue().toString();
            String year = target.substring(target.lastIndexOf("_") + 1, target.lastIndexOf("_") + 5);
            if (!tables.contains(systemLogHead + year)) {
                DBUtil.createLogTable(year);
                tables.add(year);
            }
            return shardingValue.getLogicTableName() + "_" + year;
        }
    
        @Override
        public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Integer> shardingValue) {
            Collection<String> availables = new ArrayList<>();
            Range valueRange = shardingValue.getValueRange();
            for (String target : tables) {
                Integer shardValue = Integer.parseInt(target.substring(target.lastIndexOf("_") + 1, target.lastIndexOf("_") + 5));
                if (valueRange.hasLowerBound()) {
                    String lowerStr = valueRange.lowerEndpoint().toString();
                    Integer start = Integer.parseInt(lowerStr.substring(0, 4));
                    if (start - shardValue > 0) {
                        continue;
                    }
                }
                if (valueRange.hasUpperBound()) {
                    String upperStr = valueRange.upperEndpoint().toString();
                    Integer end = Integer.parseInt(upperStr.substring(0, 4));
                    if (end - shardValue < 0) {
                        continue;
                    }
                }
                availables.add(target);
            }
            return availables;
        }
    }
    

    其中init方法通过另一个类实例化完成后调用,难点在于如何拿到该实例化的LogShardingAlgorithm

    import cn.hutool.core.util.ReflectUtil;
    import com.google.common.base.Optional;
    import com.onegene.platform.system.log.LogShardingAlgorithm;
    import org.apache.shardingsphere.core.rule.ShardingRule;
    import org.apache.shardingsphere.core.rule.TableRule;
    import org.apache.shardingsphere.core.strategy.route.ShardingStrategy;
    import org.apache.shardingsphere.shardingjdbc.jdbc.core.ShardingContext;
    import org.apache.shardingsphere.shardingjdbc.jdbc.core.datasource.ShardingDataSource;
    import org.springframework.beans.factory.annotation.Autowired;
    import org.springframework.stereotype.Component;
    
    import javax.annotation.PostConstruct;
    import javax.sql.DataSource;
    /**
     * @author: laoliangliang
     * @description:
     * @create: 2020/1/18 8:29
     **/
    @Component
    public class StartupConfig {
        @Autowired
        private DataSource dataSource;
    
        @PostConstruct
        public void init() {
            this.loadLogInit();
        }
    
        private void loadLogInit() {
            if (dataSource instanceof ShardingDataSource) {
                ShardingDataSource sds = (ShardingDataSource) dataSource;
                ShardingContext shardingContext = sds.getShardingContext();
                ShardingRule shardingRule = shardingContext.getShardingRule();
                Optional<TableRule> systemLog = shardingRule.findTableRule("system_log");
                TableRule tableRule = systemLog.orNull();
                if (tableRule != null) {
                    ShardingStrategy tableShardingStrategy = tableRule.getTableShardingStrategy();
                    LogShardingAlgorithm preciseShardingAlgorithm = (LogShardingAlgorithm) ReflectUtil.getFieldValue(tableShardingStrategy, "preciseShardingAlgorithm");
                    LogShardingAlgorithm rangeShardingAlgorithm = (LogShardingAlgorithm) ReflectUtil.getFieldValue(tableShardingStrategy, "rangeShardingAlgorithm");
                    preciseShardingAlgorithm.init();
                    rangeShardingAlgorithm.init();
                }
            }
        }
    }
    

    1.3. 总结

    通过查看源码可以知道,它最后把LogShardingAlgorithm实例化的对象放入了ShardingDataSource,那我们就要从里面把它取出来,若它正常没提供get方法,那我们就用反射硬把它取出来

    通过上述代码可以看出,范围分片和精确分片需要实例化两个类,我想是否可以合到一个类,网上也找了一下,发现有的版本使用ComplexKeysShardingAlgorithm算法是可以同时实现范围和精确分片查询的,但经过我实际测试,现在的4.0.0版本不行,原因在于以下代码,此为复杂分片源码

    public final class ComplexShardingStrategy implements ShardingStrategy {
        
        @Getter
        private final Collection<String> shardingColumns;
        
        private final ComplexKeysShardingAlgorithm shardingAlgorithm;
        
        public ComplexShardingStrategy(final ComplexShardingStrategyConfiguration complexShardingStrategyConfig) {
            Preconditions.checkNotNull(complexShardingStrategyConfig.getShardingColumns(), "Sharding columns cannot be null.");
            Preconditions.checkNotNull(complexShardingStrategyConfig.getShardingAlgorithm(), "Sharding algorithm cannot be null.");
            shardingColumns = new TreeSet<>(String.CASE_INSENSITIVE_ORDER);
            shardingColumns.addAll(Splitter.on(",").trimResults().splitToList(complexShardingStrategyConfig.getShardingColumns()));
            shardingAlgorithm = complexShardingStrategyConfig.getShardingAlgorithm();
        }
        
        @SuppressWarnings("unchecked")
        @Override
        public Collection<String> doSharding(final Collection<String> availableTargetNames, final Collection<RouteValue> shardingValues) {
            Map<String, Collection<Comparable<?>>> columnShardingValues = new HashMap<>(shardingValues.size(), 1);
            String logicTableName = "";
            for (RouteValue each : shardingValues) {
    
                // 重点这里他把each的值强行转化成了ListRouteValue而范围查询对应的为BetweenRouteValue,所以在源码级别就被卡死了,除非重写策略,否则这个已经不能像以前那样用了
                columnShardingValues.put(each.getColumnName(), ((ListRouteValue) each).getValues());
                logicTableName = each.getTableName();
            }
            Collection<String> shardingResult = shardingAlgorithm.doSharding(availableTargetNames, new ComplexKeysShardingValue(logicTableName, columnShardingValues));
            Collection<String> result = new TreeSet<>(String.CASE_INSENSITIVE_ORDER);
            result.addAll(shardingResult);
            return result;
        }
    }
    

    老梁讲Java

    欢迎关注公众号,回复“教学视频”一起学习进步

  • 相关阅读:
    R 多图间距调整
    ggplot2 颜色渐变(离散颜色)设置
    R语言因子排序
    利用plink软件基于LD信息过滤SNP
    利用vcftools比较两个vcf文件
    在R语言中使用Stringr进行字符串操作
    perl 数组快速去除重复元素
    Shell中 ##%% 操作变量名
    Java基础之数值类型之间的转换
    Java中0.2减0.1 结果为什么不是0.1?
  • 原文地址:https://www.cnblogs.com/sky-chen/p/12208821.html
Copyright © 2020-2023  润新知