一、题目说明
题目295. Find Median from Data Stream,数据流的中位数(数据为奇数个,则为中间的;否则为中间2个数的平均数)。
二、我的解答
用一个数组实现,但是超时。改用插入排序如下:
class MedianFinder {
vector<int> store;
public:
void addNum(int num)
{
if (store.empty())
store.push_back(num);
else
store.insert(lower_bound(store.begin(), store.end(), num), num);
}
double findMedian()
{
int n = store.size();
return n & 1 ? store[n / 2] : (store[n / 2 - 1] + store[n / 2]) * 0.5;
}
};
Runtime: 304 ms, faster than 9.04% of C++ online submissions for Find Median from Data Stream.
Memory Usage: 42.7 MB, less than 60.87% of C++ online submissions for Find Median from Data Stream.
三、优化措施
用2个优先级队列实现:
class MedianFinder {
priority_queue<int> max;//大根堆
priority_queue<int, vector<int>, greater<int>> min;
public:
//数据优先放入大顶堆中,然后将大顶堆堆顶元素放入小顶堆中
//如果大顶堆元素数量小于小顶堆元素数量,则从小顶堆中弹出一个元素放入大顶堆中
//如果数据总量为奇数,则中位数为大顶堆堆顶元素,否则为大顶堆和小顶堆元素和除以2。
MedianFinder() {
}
void addNum(int num) {
max.push(num);
min.push(max.top());
max.pop();
if (max.size() < min.size()) {
max.push(min.top());
min.pop();
}
}
double findMedian() {
int size = max.size() + min.size();
return size % 2 == 1 ? max.top() : (max.top() + min.top()) / 2.0;
}
};
性能如下:
Runtime: 172 ms, faster than 47.48% of C++ online submissions for Find Median from Data Stream.
Memory Usage: 42.4 MB, less than 100.00% of C++ online submissions for Find Median from Data Stream.