一、题目说明
题目39. Combination Sum,是从正数列表中选取几个,其和等于目标数的可能组合。任何一个数可以重复取,如candidates = [2,3,6,7], target = 7,结果集合是[ [7], [2,2,3] ]
如candidates = [2,3,5], target = 8,结果集合是 [ [2,2,2,2], [2,3,3], [3,5] ]
题目难度是Medium,先思考一下,再来解答。
二、我的解答
经过一番思考,这个题目可以通过dfs(树的深度优先遍历)求解,首先我们画一个“树”,反映求解过程。这个图,我就不上了。我的代码:
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
class Solution{
public:
void dfs(vector<vector<int>>& res,vector<int>& candidates,vector<int>& path,int begin,int target){
if(target==0){
res.push_back(path);
return;
}
for(int i=begin;i<candidates.size() && target-candidates[i]>=0;i++){
path.push_back(candidates[i]);
dfs(res,candidates,path,i,target-candidates[i]);
path.pop_back();
}
}
vector<vector<int>> combinationSum(vector<int>& candidates, int target){
vector<vector<int>> res;
vector<int> path;
if(candidates.size()<1){
return res;
}
sort(candidates.begin(),candidates.end());
dfs(res,candidates,path,0,target);
return res;
}
};
int main(){
Solution s;
vector<int> candidates = {2,3,6,7};
vector<vector<int>> res = s.combinationSum(candidates,7);
cout<<"candidates of {2,3,6,7}"<<"
";
for(int i=0;i<res.size();i++){
vector<int> r = res[i];
for(int j=0;j<r.size();j++){
cout<<r[j]<<" ";
}
cout<<"
";
}
cout<<"candidates of {2,3,5}"<<"
";
candidates = {2,3,5};
res = s.combinationSum(candidates,8);
for(int i=0;i<res.size();i++){
vector<int>r = res[i];
for(int j=0;j<r.size();j++){
cout<<r[j]<<" ";
}
cout<<"
";
}
return 0;
}
性能:
Runtime: 12 ms, faster than 84.44% of C++ online submissions for Combination Sum.
Memory Usage: 9.8 MB, less than 58.33% of C++ online submissions for Combination Sum.
一行代码没修改,再次运行:
Runtime: 4 ms, faster than 99.94% of C++ online submissions for Combination Sum.
Memory Usage: 9.3 MB, less than 94.44% of C++ online submissions for Combination Sum.
三、优化
比较搞笑的是,我一行代码没修改,再次提交性能居然大幅提高。厉害了!
另外的解答思路是DP,这个是网上的,不是我写的。
用unordered_map<int, vector<vector
dict[2] ={2}
dict[3] = {3}
dict[4] = {2,2}
dict[5] = dict[2] + dict[3] = {2,3}
dict[6] = {dict[2] + dict[2] + dict[2]},{dict[3]}
....
class Solution {
public:
vector<vector<int>> combinationSum(vector<int> &candidates, int target)
{
unordered_map<int, vector<vector<int>>> dict;
for (int i = 1; i <= target; i++)
for (int it : candidates)
if (i == it){
dict[i].push_back(vector<int>{ it });
}
else if (i > it){
for (auto ivec : dict[i - it]) {
if (it < ivec[ivec.size() - 1]) {
continue;
}
ivec.push_back(it);
dict[i].push_back(ivec);
}
}
return dict[target];
}
};