• 第九届蓝桥杯——螺旋折线



    标题:螺旋折线

    如图p1.png所示的螺旋折线经过平面上所有整点恰好一次。
    对于整点(X, Y),我们定义它到原点的距离dis(X, Y)是从原点到(X, Y)的螺旋折线段的长度。

    例如dis(0, 1)=3, dis(-2, -1)=9

    给出整点坐标(X, Y),你能计算出dis(X, Y)吗?

    【输入格式】
    X和Y

    对于40%的数据,-1000 <= X, Y <= 1000
    对于70%的数据,-100000 <= X, Y <= 100000
    对于100%的数据, -1000000000 <= X, Y <= 1000000000

    【输出格式】
    输出dis(X, Y)


    【样例输入】
    0 1

    【样例输出】
    3


    资源约定:
    峰值内存消耗(含虚拟机) < 256M
    CPU消耗 < 1000ms


    请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。

    注意:
    main函数需要返回0;
    只使用ANSI C/ANSI C++ 标准;
    不要调用依赖于编译环境或操作系统的特殊函数。
    所有依赖的函数必须明确地在源文件中 #include <xxx>
    不能通过工程设置而省略常用头文件。

    提交程序时,注意选择所期望的语言类型和编译器类型。

    思路:我们将(0.0)点向下折一次,构成一个正方形;在将(-1,-1)点向下折一次,构成一个正方形;一次类推,折y=x轴上的点向下,得到多个正方形。每个正方形的边长差为8,此时我们可以使用等差数列求解。

    解法:

    #include<iostream>
    #include<math.h>
    using namespace std;
    
    int max(int x,int y)
    {
        return abs(x) > abs(y) ? abs(x) : abs(y);
    }
    int main()
    {
        int all_count= 0;
        int d;
        int every_count = 0;
        int x, y;
        cin >> x >> y;
        d = max(x, y);
        //由图中,我们可以将螺旋曲线看成是一个个正方形,他们的边长差为8
        if(x>=y) 
        {
            //当x>y时,我们求出前d层(包括d层)边的个数,算出(x,y)距(-d,-d)的距离,然后相减
            every_count = x - (-d) + y - (-d);
            all_count = 8 * d + d*(d - 1) / 2 * 8 - every_count;
            cout << all_count << endl;
        }
        else if(x<y)
        {
                    //当x<y时,我们求出前d-1层(包括d-1层)边的个数,算出(x,y)距(-d,-d)的距离,然后相加
            every_count = x - (-d) + y - (-d);
            all_count = 8 * (d-1) + (d-2)*(d - 1) / 2 * 8 +every_count;
            cout << all_count << endl;
        }
        return 0;
    }

    此时时间复杂图为O(1)。

  • 相关阅读:
    111
    实验 12 综合练习二
    实验 11结构体
    作业 5 指针应用1
    实验 10 指针2
    实验9 指针1
    实验8 数组2
    实验7
    321
    实验9-2
  • 原文地址:https://www.cnblogs.com/single-dont/p/10576723.html
Copyright © 2020-2023  润新知