先上题目:
Time Limit: 1 second(s) | Memory Limit: 32 MB |
In a strange shop there are n types of coins of value A1, A2 ... An. You have to find the number of ways you can make K using the coins. You can use any coin at most K times.
For example, suppose there are three coins 1, 2, 5. Then if K = 5 the possible ways are:
11111
1112
122
5
So, 5 can be made in 4 ways.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing two integers n (1 ≤ n ≤ 100) and K (1 ≤ K ≤ 10000). The next line contains n integers, denoting A1, A2 ... An (1 ≤ Ai ≤ 500). All Ai will be distinct.
Output
For each case, print the case number and the number of ways K can be made. Result can be large, so, print the result modulo 100000007.
Sample Input |
Output for Sample Input |
2 3 5 1 2 5 4 20 1 2 3 4 |
Case 1: 4 Case 2: 108 |
题意:有n种硬币,各有其价值,给你一个数k,问你有多少种方法可以用这n种硬币凑出k,其中每种硬币最多可以用k个。
根据题意分析,可以发现这是一条完全背包。
分析:对于每一种的硬币可以用k个,如果硬币的价值最小(等于1),最多可以用k个,那就说明对于每一个物品在这里都是刚好可以放满体积为k的背包或者有剩余(或者说溢出,总之就是数量是过量的意思),这样我们就可以将它看成是一个完全背包了。
状态转移方程:dp[i][j]=(dp[i][j]%MOD+dp[i-1][j-l*a[i]]%MOD)%MOD
优化以后就是dp[i]=(dp[i]%MOD+dp[i-[i]]%MOD)%MOD (注意这里的i和上面的i意思不一样,上面的i代表第i中硬币,这里的i代表背包体积)。
上代码:
1 #include <cstdio> 2 #include <cstring> 3 #define MAX 10002 4 #define MOD 100000007 5 using namespace std; 6 7 int a[102]; 8 int dp[MAX]; 9 10 11 int main() 12 { 13 int t,n,k; 14 //freopen("data.txt","r",stdin); 15 scanf("%d",&t); 16 for(int cal=1;cal<=t;cal++){ 17 memset(dp,0,sizeof(dp)); 18 scanf("%d %d",&n,&k); 19 for(int i=1;i<=n;i++){ 20 scanf("%d",&a[i]); 21 } 22 dp[0]=1; 23 for(int i=1;i<=n;i++){ 24 for(int j=a[i];j<=k;j++){ 25 dp[j]=(dp[j]+dp[j-a[i]])%MOD; 26 } 27 } 28 printf("Case %d: %d ",cal,dp[k]); 29 } 30 return 0; 31 }