先上题目
Partition
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1697 Accepted Submission(s): 688
Problem Description
Define f(n) as the number of ways to perform n in format of the sum of some positive integers. For instance, when n=4, we have
4=1+1+1+1
4=1+1+2
4=1+2+1
4=2+1+1
4=1+3
4=2+2
4=3+1
4=4
totally 8 ways. Actually, we will have f(n)=2(n-1) after observations.
Given a pair of integers n and k, your task is to figure out how many times that the integer k occurs in such 2(n-1) ways. In the example above, number 1 occurs for 12 times, while number 4 only occurs once.
4=1+1+1+1
4=1+1+2
4=1+2+1
4=2+1+1
4=1+3
4=2+2
4=3+1
4=4
totally 8 ways. Actually, we will have f(n)=2(n-1) after observations.
Given a pair of integers n and k, your task is to figure out how many times that the integer k occurs in such 2(n-1) ways. In the example above, number 1 occurs for 12 times, while number 4 only occurs once.
Input
The first line contains a single integer T(1≤T≤10000), indicating the number of test cases.
Each test case contains two integers n and k(1≤n,k≤109).
Each test case contains two integers n and k(1≤n,k≤109).
Output
Output the required answer modulo 109+7 for each test case, one per line.
Sample Input
2
4 2
5 5
Sample Output
5
1
题意是对一个数n有2^(n-1)这么多种分解形式,问这些分解式中某一个数字出现了多少次。
这一题在排位赛的时候发现了规律,然后按照递推式子Sn=2*Sn-2^(n-3) 其中n>=3 ;S1=1;S2=2。是只用这条式子的话会超时,所以继续想办法,然后回来以后看了其他人的博客,看到别人把Sn的式子写出来了,于是我尝试将式子迭代,然后就出现了被人博客中的式子了= =,然后根据式子Sn=2^(n-1)+(n-2)*2^(n-3) 其中n>=3;S1=1;S2=2。然后一开始用了递归的快速幂,结果爆栈了= =,然后换成递推形式的,然后一直wa,后来看到别人的代码里有一个判断k<n的情况,想到n里面有可能出现大于n的数,这时就要输出0。然后,然后就过了= =
上代码:
1 #include <stdio.h> 2 #include <string.h> 3 #define LL long long 4 #define MOD 1000000007 5 using namespace std; 6 7 LL Fast_MOD(LL n) 8 { 9 LL r,k; 10 if(!n) return 1; 11 r=2; 12 k=1; 13 while(n>1) 14 { 15 if(n&1) k=k*r%MOD; 16 r=r*r%MOD; 17 n>>=1; 18 } 19 return r*k%MOD; 20 } 21 22 LL operate(LL n,LL k) 23 { 24 LL ans,d; 25 d=n-k+1; 26 if(d<=0) return 0; 27 if(d==1) return 1; 28 if(d==2) return 2; 29 ans=(Fast_MOD(d-1)+(d-2)*Fast_MOD(d-3))%MOD; 30 return ans; 31 } 32 33 int main() 34 { 35 int t; 36 LL n,k; 37 //freopen("data.txt","r",stdin); 38 scanf("%d",&t); 39 while(t--) 40 { 41 scanf("%I64d %I64d",&n,&k); 42 printf("%I64d ",operate(n,k)); 43 } 44 return 0; 45 }