• HDU


    先上题目

    Partition

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1697    Accepted Submission(s): 688


    Problem Description
    Define f(n) as the number of ways to perform n in format of the sum of some positive integers. For instance, when n=4, we have
      4=1+1+1+1
      4=1+1+2
      4=1+2+1
      4=2+1+1
      4=1+3
      4=2+2
      4=3+1
      4=4
    totally 8 ways. Actually, we will have f(n)=2(n-1) after observations.
    Given a pair of integers n and k, your task is to figure out how many times that the integer k occurs in such 2(n-1) ways. In the example above, number 1 occurs for 12 times, while number 4 only occurs once.
     
    Input
    The first line contains a single integer T(1≤T≤10000), indicating the number of test cases.
    Each test case contains two integers n and k(1≤n,k≤109).
     
    Output
    Output the required answer modulo 109+7 for each test case, one per line.
     
    Sample Input
    2 4 2 5 5
     
    Sample Output
    5 1
     
      题意是对一个数n有2^(n-1)这么多种分解形式,问这些分解式中某一个数字出现了多少次。
      这一题在排位赛的时候发现了规律,然后按照递推式子Sn=2*Sn-2^(n-3) 其中n>=3 ;S1=1;S2=2。是只用这条式子的话会超时,所以继续想办法,然后回来以后看了其他人的博客,看到别人把Sn的式子写出来了,于是我尝试将式子迭代,然后就出现了被人博客中的式子了= =,然后根据式子Sn=2^(n-1)+(n-2)*2^(n-3) 其中n>=3;S1=1;S2=2。然后一开始用了递归的快速幂,结果爆栈了= =,然后换成递推形式的,然后一直wa,后来看到别人的代码里有一个判断k<n的情况,想到n里面有可能出现大于n的数,这时就要输出0。然后,然后就过了= =
     
    上代码:
     
     1 #include <stdio.h>
     2 #include <string.h>
     3 #define LL long long
     4 #define MOD 1000000007
     5 using namespace std;
     6 
     7 LL Fast_MOD(LL n)
     8 {
     9     LL r,k;
    10     if(!n) return 1;
    11     r=2;
    12     k=1;
    13     while(n>1)
    14     {
    15         if(n&1) k=k*r%MOD;
    16         r=r*r%MOD;
    17         n>>=1;
    18     }
    19     return r*k%MOD;
    20 }
    21 
    22 LL operate(LL n,LL k)
    23 {
    24     LL ans,d;
    25     d=n-k+1;
    26     if(d<=0) return 0;
    27     if(d==1) return 1;
    28     if(d==2) return 2;
    29     ans=(Fast_MOD(d-1)+(d-2)*Fast_MOD(d-3))%MOD;
    30     return ans;
    31 }
    32 
    33 int main()
    34 {
    35     int t;
    36     LL n,k;
    37     //freopen("data.txt","r",stdin);
    38     scanf("%d",&t);
    39     while(t--)
    40     {
    41         scanf("%I64d %I64d",&n,&k);
    42         printf("%I64d
    ",operate(n,k));
    43     }
    44     return 0;
    45 }
    4602
  • 相关阅读:
    【★】Web精彩实战之
    【★】Web精彩实战之
    Color.js增强你对颜色的控制
    JS查错小工具-三生有幸【推荐】
    JS查错小工具-三生有幸【推荐】
    人工智能成功识别“色情暴力”信息????
    新浪博客“网络繁忙请稍后再试”
    《OD大数据实战》Sqoop入门实例
    《OD大数据实战》驴妈妈旅游网大型离线数据电商分析平台
    《OD大数据实战》HBase入门实战
  • 原文地址:https://www.cnblogs.com/sineatos/p/3247047.html
Copyright © 2020-2023  润新知