• Leetcode 中Linked List Cycle 一类问题


    141. Linked List Cycle

    Given a linked list, determine if it has a cycle in it.

    Follow up:
    Can you solve it without using extra space?

    /**
     * Definition for singly-linked list.
     * struct ListNode {
     *     int val;
     *     ListNode *next;
     *     ListNode(int x) : val(x), next(NULL) {}
     * };
     */
    class Solution {
    public:
        bool hasCycle(ListNode *head) {
            if (head == NULL){
                return false;
            }
            ListNode* slow = head;
            ListNode* fast = head;
            while (fast -> next != NULL && fast -> next -> next != NULL){    // 注意判断条件,第一次写的时候没有注意到要判断fast -> next是否为空
                slow = slow -> next;
                fast = fast -> next -> next;
                if (fast == slow){
                    return true;
                }
            }
            return false;
        }
    };

     160. Intersection of Two Linked Lists

    Write a program to find the node at which the intersection of two singly linked lists begins.

    For example, the following two linked lists:

    A:          a1 → a2
                       ↘
                         c1 → c2 → c3
                       ↗            
    B:     b1 → b2 → b3
    

    begin to intersect at node c1.

    Notes:

    • If the two linked lists have no intersection at all, return null.
    • The linked lists must retain their original structure after the function returns.
    • You may assume there are no cycles anywhere in the entire linked structure.
    • Your code should preferably run in O(n) time and use only O(1) memory.   

    两种方法:

    1.  利用两个栈去做,但是这不符合题目O(1)空间复杂度的要求

    2.  很tricky的一种方法。双指针解决:

    Two pointer solution (O(n+m) running time, O(1) memory):

    • Maintain two pointers pA and pB initialized at the head of A and B, respectively. Then let them both traverse through the lists, one node at a time.
    • When pA reaches the end of a list, then redirect it to the head of B (yes, B, that's right.); similarly when pB reaches the end of a list, redirect it the head of A.
    • If at any point pA meets pB, then pA/pB is the intersection node.
    • To see why the above trick would work, consider the following two lists: A = {1,3,5,7,9,11} and B = {2,4,9,11}, which are intersected at node '9'. Since B.length (=4) < A.length (=6), pB would reach the end of the merged list first, because pB traverses exactly 2 nodes less than pA does. By redirecting pB to head A, and pA to head B, we now ask pB to travel exactly 2 more nodes than pA would. So in the second iteration, they are guaranteed to reach the intersection node at the same time.
    • If two lists have intersection, then their last nodes must be the same one. So when pA/pB reaches the end of a list, record the last element of A/B respectively. If the two last elements are not the same one, then the two lists have no intersections.
    /**
     * Definition for singly-linked list.
     * struct ListNode {
     *     int val;
     *     ListNode *next;
     *     ListNode(int x) : val(x), next(NULL) {}
     * };
     */
    class Solution {
    public:
        ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
            if (headA == NULL || headB == NULL){
                return NULL;
            }
            ListNode* p1 = headA;
            ListNode* p2 = headB;
            
            while(p1 != p2){
                p1 = p1 == NULL ? headB: p1 -> next;   // 注意的一点是,这种条件判断也包含了当两个链表没有交点的情况,此时p1和p2都是NULL,会跳出循环,
                p2 = p2 == NULL ? headA: p2 -> next;
            }
            return p1;
        }
    };

    二次刷:思路是a和b都开始一步一步的走,然后如果a走到了链表的尾部就从b的头部从新开始走,同理,如果b走到了链表的尾部就从a的头部开始走,不过要注意的是要对到达过链表的尾部做标记,这样才能判断链表有没有交点。代码写的有点啰嗦,其实就是上边的代码的    简洁版。。。没有对比就没有提高

    /**
     * Definition for singly-linked list.
     * struct ListNode {
     *     int val;
     *     ListNode *next;
     *     ListNode(int x) : val(x), next(NULL) {}
     * };
     */
    class Solution {
    public:
        ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
            if (headA == NULL || headB == NULL){
                return NULL;
            }
            ListNode* pA = headA;
            ListNode* pB = headB;
            bool a = true;
            bool b = true;
            while (pA -> val != pB -> val){
                pA = pA -> next;
                pB = pB -> next;
                if (pA == NULL) {
                    if (a == false){
                        return NULL;
                    }
                    pA = headB;
                    a = false;
                    
                }
                if (pB == NULL){
                    if (b == false){
                        return NULL;
                    }
                    pB = headA;
                    b = false;
                }
               
            }
            return pA;
        }
    };

    或者很正常的一种思路:先求出两个链表的长度,求出长度的差值,然后用两个指针,一个指针先走长度的差值的那些步数,然后两个指针开始一块走,碰到的话就是交点,到了末尾就是没有交点。

    19. Remove Nth Node From End of List

    Given a linked list, remove the nth node from the end of list and return its head.

    For example,   Given linked list: 1->2->3->4->5, and n = 2.   After removing the second node from the end, the linked list becomes 1->2->3->5.



    Note:
    Given n will always be valid.
    Try to do this in one pass.
    /**
     * Definition for singly-linked list.
     * struct ListNode {
     *     int val;
     *     ListNode *next;
     *     ListNode(int x) : val(x), next(NULL) {}
     * };
     */
    class Solution {
    public:
        ListNode* removeNthFromEnd(ListNode* head, int n) {
            if (head == NULL){
                return NULL;
            }
            ListNode* newp = new ListNode(0);   // 要新建一个结点,来防止只有一个结点的情况出现
            newp -> next = head;
            
            ListNode* slow = newp;
            ListNode* fast = newp;
            
            for (int i = 0; i <= n; i++){
                fast = fast -> next;
            }
            while (fast != NULL){
                slow = slow -> next;
                fast = fast -> next;
            }
            
            slow -> next = slow -> next -> next;
            return newp -> next;
        }
    };

     ==========

    142. Linked List Cycle II

    Given a linked list, return the node where the cycle begins. If there is no cycle, return null.

    To represent a cycle in the given linked list, we use an integer pos which represents the position (0-indexed) in the linked list where tail connects to. If pos is -1, then there is no cycle in the linked list.

    Note: Do not modify the linked list.

    Example 1:

    Input: head = [3,2,0,-4], pos = 1
    Output: tail connects to node index 1
    Explanation: There is a cycle in the linked list, where tail connects to the second node.
    

    Example 2:

    Input: head = [1,2], pos = 0
    Output: tail connects to node index 0
    Explanation: There is a cycle in the linked list, where tail connects to the first node.
    

    Example 3:

    Input: head = [1], pos = -1
    Output: no cycle
    Explanation: There is no cycle in the linked list.
    class Solution {
    public:
        ListNode *detectCycle(ListNode *head) {
            if (!head) return NULL;
            ListNode *slow = head;
            ListNode *fast = head;
            bool HasCycle = false;
            while (fast->next != NULL && fast->next->next != NULL){
                slow = slow -> next;
                fast = fast -> next -> next;
                if (fast == slow){
                    HasCycle = true;
                    break;
                }
            }
            // 需要判断是否是有环的,若是有环,那么就
            if (HasCycle){
                // 若是有环,那么让fast 从头开始走,每次走一个结点。
                fast = head;
                while (slow != fast){
                    fast = fast ->next;
                    slow = slow ->next;
                }
                return fast;
            }
            return NULL;
        }
    };
    

      


     
  • 相关阅读:
    Introduction to Mathematical Thinking
    学习 Unix 常用命令
    学习 《UNIX网络编程》
    学习编译并运行C代码
    Introduction to Mathematical Thinking
    Introduction to Mathematical Thinking
    CentOS 6和CentOS 7防火墙的关闭
    centOS 7下无法启动网络(service network start)错误解决办法(应该是最全的了。。。)
    虚拟机中的CentOS 7设置固定IP连接最理想的配置
    使用VMware安装CentOS7详请
  • 原文地址:https://www.cnblogs.com/simplepaul/p/7680393.html
Copyright © 2020-2023  润新知