Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than or equal to the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
For example:
Given BST [1,null,2,2]
,
1 2 / 2
return [2]
.
Note: If a tree has more than one mode, you can return them in any order.
Follow up: Could you do that without using any extra space? (Assume that the implicit stack space incurred due to recursion does not count).
思路:
对于本题中的二叉搜索树,节点的排列是有顺序的,左节点<=当前节点<=右节点。也就是说,假设这样一种情况:存在大于等于3个的连续相同的节点,且当前节点存在左右子树,那么相同的三个节点一定是:当前节点、左子树中最大的节点和右子树中最小的节点。
这里我们容易想到的是中序遍历(对于整个树,先遍历左节点,再遍历中间节点,最后遍历右节点),使用中序遍历遍历二叉搜索树,可以获得一个从小到大的排好序的升序序列。
所以分析到这里,题目就转化成:给定一个升序序列,寻找重复次数最多的数字 , 所以
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector<int> findMode(TreeNode* root) { tmp_cnt = 0; max_cnt = 0; cur_value = 0; inorder(root); return result; } private: int tmp_cnt; int max_cnt; int cur_value; vector<int> result; void inorder(TreeNode* root){ if (root == NULL){ return; } // 遍历左子树 inorder(root->left); tmp_cnt++; if (cur_value != root-> val){ cur_value = root-> val; tmp_cnt = 1; } if (tmp_cnt > max_cnt){ max_cnt = tmp_cnt; result.clear(); result.push_back(root->val); }else if (tmp_cnt == max_cnt){ result.push_back(root->val); } // 遍历右子树 inorder(root->right); } };