• TPS限流


    限流是高可用服务需要具备的能力之一 ,粗暴简单的就像我们之前做的并发数控制。好一点的有tps限流,可用令牌桶等算法实现。《亿级流量网站架构核心技术》一书P67限流详解也有讲。dubbo提供了此机制,TpsLimitFilter。guava也提供了相应的工具类RateLimiter。

    1. dubbo提供的tps限流

    1.1 demo使用

    1.1.1 在source folder下放置,META-INF/dubbo/com.alibaba.dubbo.rpc.Filter

    里面写入 tpslimiter=com.alibaba.dubbo.rpc.filter.TpsLimitFilter
    表示将TpsLimitFilter这个filter的扩展给装配给dubbo

    1.1.2 provider侧的配置

    <dubbo:service interface="org.simonme.dubbo.demo.provider.service.HelloService" ref="m00001.app001.xx.helloService" filter="tpslimiter">
        <dubbo:parameter key="tps" value="5" />
    </dubbo:service>
    

    意思对HelloService 这个接口在provider侧做tps为5的限流,默认间隔是60s,可以通过tps.interval这个parameter进行配置,单位是毫秒。注意此处配置的tps为5,不是每秒限制通过5个以内的请求,而是单位时间间隔内通过5个以内的请求。关于单位时间间隔前面解释了。

    1.2 如果超限了是什么现象?

    客户端会抛出rpc调用异常:
    com.alibaba.dubbo.rpc.RpcException: Failed to invoke service org.simonme.dubbo.demo.provider.service.HelloService.sayHello because exceed max service tps

    1.3 原理分析

    主要是DefaultTPSLimiterStatItem两个类配合完成。采用的是令牌桶算法,实现在StatItem类中。
    大意是:
    每隔一个单位时间后重置令牌桶中令牌的数量,然后每次请求来的时候减1,减到小于0时,拒绝请求。

    long now = System.currentTimeMillis();
    if (now > lastResetTime + interval) {
        token.set(rate);
        lastResetTime = now;
    }
    
    int value = token.get();
    boolean flag = false;
    while (value > 0 && !flag) {
        flag = token.compareAndSet(value, value - 1);
        value = token.get();
    }
    

    注意:此实现依赖系统时间,如果想用相对时间实现,可以参见这里 dubbo的TPS限流模块在运行时系统时间发生变化的情况下限流不能正常工作 #2345

    2. spring cloud

    对于采用spring cloud的架构的项目,可以借助guava的RateLimiter来实现ZuulFilter的子类来达成tps限流的目的。

  • 相关阅读:
    输出python的help结果到文件中
    webdriver 的三种等待方式
    Loadrunner 怎么将response的数据下载下来
    Loadrunner web_reg_find 和web_reg_save_param 比较
    LR的响应时间与使用IE所感受时间不一致的讨论
    Loadrunner错误-26601、-27492、-27727处理方法
    loadrunner运行乱码解决方法
    OpenGL ES: (1) OpenGL ES的由来 (转)
    JPG:文件格式系列科普之.JPEG/.JPG(转)
    单色位图、16色位图、256色位图的含义
  • 原文地址:https://www.cnblogs.com/simoncook/p/9567604.html
Copyright © 2020-2023  润新知