1 import numpy as np 2 3 array = np.array([[1,2,3],[4,5,6]]) 4 5 print(array) 6 print('number of dim:',array.ndim)#维度 7 print('shape:',array.shape) 8 print('size:',array.size)
可以看到numpy中也有特定定义array的格式,对比tf中可以看到很多包与框架都有自己数据类型
创建特定的数据
1 import numpy as np 2 3 a = np.array([[1,2,3],[4,5,6]]) 4 print(a.dtype) 5 #默认为int32 6 7 a = np.array([2,23,4],dtype=np.float) 8 print(a.dtype) 9 # np.float默认为float64 ,np.float32指定为 10 11 #创建全0的数组 12 a = np.zeros((3,4)) # 数据全为0,3行4列 13 14 #创建全一数组, 同时也能指定这些特定数据的 dtype: 15 a = np.ones((3,4),dtype = np.int) # 数据为1,3行4列 16 17 #创建全空数组, 其实每个值都是接近于零的数 18 v = np.empty(shape=(3,4),dtype=np.float) # 数据为empty,3行4列 19 20 """ 21 array([[ 0.00000000e+000, 4.94065646e-324, 9.88131292e-324, 22 1.48219694e-323], 23 [ 1.97626258e-323, 2.47032823e-323, 2.96439388e-323, 24 3.45845952e-323], 25 [ 3.95252517e-323, 4.44659081e-323, 4.94065646e-323, 26 5.43472210e-323]]) 27 """ 28 29 #用 arange 创建连续数组: arange means 安排,排列,整理 30 a = np.arange(10,20,2) # 10-19 的数据,2步长 31 """ 32 array([10, 12, 14, 16, 18]) 33 """ 34 35 #使用 reshape 改变数据的形状 36 a = np.arange(12).reshape((3,4)) # 3行4列,0到11 37 38 """ 39 array([[ 0, 1, 2, 3], 40 [ 4, 5, 6, 7], 41 [ 8, 9, 10, 11]]) 42 """ 43 44 45 # 用 linspace 创建线段型数据: 46 a = np.linspace(1,10,20) # 开始端1,结束端10,且分割成20个数据,生成线段 47 """ 48 array([ 1. , 1.47368421, 1.94736842, 2.42105263, 49 2.89473684, 3.36842105, 3.84210526, 4.31578947, 50 4.78947368, 5.26315789, 5.73684211, 6.21052632, 51 6.68421053, 7.15789474, 7.63157895, 8.10526316, 52 8.57894737, 9.05263158, 9.52631579, 10. ]) 53 """ 54 55 # 同样也能进行 reshape 工作: 56 a = np.linspace(1,10,20).reshape((5,4)) # 更改shape 57 print(a) 58 """ 59 array([[ 1. , 1.47368421, 1.94736842, 2.42105263], 60 [ 2.89473684, 3.36842105, 3.84210526, 4.31578947], 61 [ 4.78947368, 5.26315789, 5.73684211, 6.21052632], 62 [ 6.68421053, 7.15789474, 7.63157895, 8.10526316], 63 [ 8.57894737, 9.05263158, 9.52631579, 10. ]]) 64 """