• 三次样条插值特点与实现 (引用了一点别人代码,但做了改动!)


    用了点别人代码,但做了一些改动,因为看不懂那人的代码:

    引用部分原文: http://haoxiang.org/2011/06/cubic-spline-interpolation-curve-fitting/

    一. 主要特点

      1.)  一阶导数是二次曲线(光滑的..) 

         2.) 二阶导数是线性的

         3.) 也就是说,三次样条插值,是把N个离散数据,变成N-1个段,每一段的一次,二次都是连续的!

         4.) 计算量大点...

    二. 实现


    #define MAX_LEN_3 (100)

    /
    void CCubicSpline::derivative(const double *pXi,const double *pYi, int len, double *pCoefs, double Ml, double Mr)
    {

    double d[MAX_COUNT] = {0.0}; //右值

    double h[MAX_COUNT] = {0.0};
    double u[MAX_COUNT] = {0.0};
    double lam[MAX_COUNT] = {0.0};

    //一阶导数
    for (int i = 0; i<len-1; i++)
    {
    h[i] = pXi[i+1] - pXi[i];
    }

    //计算矩阵值
    for (int i = 1; i<len-1; i++)
    {
    u[i] = h[i-1]/(h[i] + h[i - 1]);
    lam[i] = h[i] /(h[i] + h[i - 1]);
    }


    double m[MAX_COUNT*MAX_COUNT] = {0.0};

    double a[MAX_COUNT] = {0.0};
    double b[MAX_COUNT] = {0.0};
    double c[MAX_COUNT] = {0.0};

    //填冲..
    for (int i = 0; i<len; i++)
    {
    for (int j = 0; j<len; j++)
    {
    m[i*len + j] = 0.0;
    }

    if (i == 0)
    {
    m[i*len + 0] = 2;
    m[i*len + 1] = 1;

    b[0] = 2;
    c[0] = 1;
    }
    else if (i == (len - 1))
    {
    m[i*len + len - 2] = 1;
    m[i*len + len - 1] = 2;

    a[len -1] = 1;
    b[len -1] = 2;
    }
    else
    {
    m[i*len + i-1] = u[i];
    m[i*len + i ] = 2;
    m[i*len + i+1] = lam[i];

    a[i] = u[i];
    b[i] = 2;
    c[i] = lam[i];
    }
    }

    // 计算方程右面
    double g[MAX_COUNT] = {0.0};

    // double Ml = 1.0; //左 指定的系数
    // double Mr = 0.6868; //右 指定的系数
    g[0] =( 6 * ( (pYi[1] - pYi[0])/ h[0] - Ml) )/h[0];
    g[len - 1] = 6 * ( Mr - (pYi[len - 1] - pYi[len - 2])/h[len - 2] )/h[len - 2];

    // g[0] =0.0;
    // g[len - 1] = 0.0;


    for (int i = 1; i < len - 1; i++)
    {
    double tmp1 = ((pYi[i+1] - pYi[i])/h[i]);
    double tmp2 = ((pYi[i] - pYi[i-1])/ h[i-1]);
    g[i] =( tmp1 - tmp2 ) / (h[i-1] + h[i]) * 6;
    }


    printf("\n====================\n");
    for (int i=0; i<len; i++)
    {
    for (int j=0; j<len; j++)
    {
    printf(" %7.3f ", m[i*len + j]);
    }
    printf(" * M%d : %7.3f \n", i, g[i]);
    }

    int count = len - 2;

    printf("\n=========\n");
    for (int j=0; j<count; j++)
    {
    printf(" %7.3f %7.3f %7.3f * M%d : %7.3f \n", a[j], b[j], c[j], j, g[j]);
    }

    //b[1] = a[1]; c[1]
    //
    //
    // 解方程 --> 追赶法
    double p[MAX_COUNT] = {0.0};
    p[0] = c[0]/b[0];
    for (int i = 1; i<len - 1;i++)
    {
    p[i] = c[i]/(b[i] - a[i]*p[i-1]);
    }


    double y[MAX_COUNT] = {0.0};
    y[0] = g[0]/b[0];
    for (int i = 1; i<len;i++)
    {
    y[i] = (g[i] - a[i]*y[i-1])/(b[i] - a[i]*p[i-1]);
    }

    double M[MAX_COUNT] = {0.0};

    M[len -1] = y[len -1];
    for (int i=len-2; i>=0; i--)
    {
    M[i] = y[i] - p[i]*M[i+1];
    }


    printf("\n P:");
    for (int i=0; i<len; i++)
    {
    printf(" %9.5f ", p[i]);
    }

    printf("\n Y:");
    for (int i=0; i<len; i++)
    {
    printf(" %9.5f ", y[i]);
    }

    printf("\n M:");
    for (int i=0; i<len; i++)
    {
    printf(" %9.5f ", M[i]);
    }
    printf("\n");


    //代入三次样表的表达式

    for (int i=0; i<len-1; i++)
    {
    pCoefs[i*4 + 0] = M[i+0] / (6 * h[i]);
    pCoefs[i*4 + 1] = (pYi[i+0] - M[i+0] * h[i] * h[i] / 6) / h[i];
    pCoefs[i*4 + 2] = M[i+1] / (6 * h[i]);
    pCoefs[i*4 + 3] = (pYi[i+1] - M[i+1] * h[i] * h[i] / 6) / h[i];
    }

    }

    //////////////////////////////


    void CCubicSpline::derivative(const double *pXi,const double *pYi, int len, double *pCoefs)
    {

    int count = len - 2;


    double d[MAX_COUNT] = {0.0}; //右值

    double h[MAX_COUNT] = {0.0};
    double u[MAX_COUNT] = {0.0};
    double lam[MAX_COUNT] = {0.0};

    //一阶导数
    for (int i = 0; i<len-1; i++)
    {
    h[i] = pXi[i+1] - pXi[i];
    }

    //计算矩阵值
    for (int i = 1; i<len-1; i++)
    {
    u[i] = h[i-1]/(h[i] + h[i - 1]);
    lam[i] = h[i] /(h[i] + h[i - 1]);
    }


    double m[MAX_COUNT*MAX_COUNT] = {0.0};

    double a[MAX_COUNT] = {0.0};
    double b[MAX_COUNT] = {0.0};
    double c[MAX_COUNT] = {0.0};

    //填冲..
    for (int i = 0; i<len; i++)
    {
    for (int j = 0; j<len; j++)
    {
    m[i*len + j] = 0.0;
    }

    if (i == 0)
    {
    m[i*len + 0] = 2;
    m[i*len + 1] = 1;

    }
    else if (i == (len - 1))
    {
    m[i*len + len - 2] = 1;
    m[i*len + len - 1] = 2;


    }
    else
    {
    m[i*len + i-1] = u[i];
    m[i*len + i ] = 2;
    m[i*len + i+1] = lam[i];

    a[i-1] = u[i];
    b[i-1] = 2;
    c[i-1] = lam[i];
    }
    }

    a[0] = 0.0;
    c[count - 1] = 0.0;

    // 计算方程右面
    double g[MAX_COUNT] = {0.0};


    for (int i = 1; i < len - 1; i++)
    {
    double tmp1 = ((pYi[i+1] - pYi[i])/h[i]);
    double tmp2 = ((pYi[i] - pYi[i-1])/ h[i-1]);
    g[i-1] =( tmp1 - tmp2 ) / (h[i-1] + h[i]) * 6;
    }


    printf("\n====================\n");
    for (int i=0; i<len; i++)
    {
    for (int j=0; j<len; j++)
    {
    printf(" %7.3f ", m[i*len + j]);
    }
    printf(" * M%d : %7.3f \n", i, g[i]);
    }


    printf("\n=========\n");
    for (int j=0; j<count; j++)
    {
    printf(" %7.3f %7.3f %7.3f * M%d : %7.3f \n", a[j], b[j], c[j], j, g[j]);
    }

    //b[1] = a[1]; c[1]
    //
    //
    // 解方程 --> 追赶法
    double p[MAX_COUNT] = {0.0};
    p[0] = c[0]/b[0];
    for (int i = 1; i<count - 1;i++)
    {
    p[i] = c[i]/(b[i] - a[i]*p[i-1]);
    }


    double y[MAX_COUNT] = {0.0};
    y[0] = g[0]/b[0];
    for (int i = 1; i<count;i++)
    {
    y[i] = (g[i] - a[i]*y[i-1])/(b[i] - a[i]*p[i-1]);
    }

    double M[MAX_COUNT] = {0.0};

    M[count -1] = y[count -1];
    for (int i=count-1; i>=0; i--)
    {
    M[i] = y[i] - p[i]*M[i+1];
    }

    for (int i=count - 1; i>= 0; i--)
    {
    M[i+1] = M[i];
    }
    M[0] = 0.0;


    printf("\n P:");
    for (int i=0; i<count; i++)
    {
    printf(" %9.5f ", p[i]);
    }

    printf("\n Y:");
    for (int i=0; i<count; i++)
    {
    printf(" %9.5f ", y[i]);
    }

    printf("\n M:");
    for (int i=0; i<len-1; i++)
    {
    printf(" %9.5f ", M[i]);
    }
    printf("\n");


    //代入三次样条的表达式

    // for(i = 0;i <= pLine->point_num - 2;i++)
    // {
    // pLine->a3[i] = M[i] / (6 * H[i]);
    // pLine->a1[i] = (pLine->y[i] - M[i] * H[i] * H[i] / 6) / H[i];
    // pLine->b3[i] = M[i+1] / (6 * H[i]);
    // pLine->b1[i] = (pLine->y[i+1] - M[i+1] * H[i] * H[i] / 6) /H[i];
    // }


    for (int i=0; i<len-1; i++)
    {
    pCoefs[i*4 + 0] = M[i+0] / (6 * h[i]);
    pCoefs[i*4 + 1] = (pYi[i+0] - M[i+0] * h[i] * h[i] / 6) / h[i];
    pCoefs[i*4 + 2] = M[i+1] / (6 * h[i]);
    pCoefs[i*4 + 3] = (pYi[i+1] - M[i+1] * h[i] * h[i] / 6) / h[i];
    }

    }

    double CCubicSpline::Spline3(double startX, double endX, int index, double curX)
    {
    double Coefs0 = m_pCoefs[index * 4 + 0];
    double Coefs1 = m_pCoefs[index * 4 + 1];
    double Coefs2 = m_pCoefs[index * 4 + 2];
    double Coefs3 = m_pCoefs[index * 4 + 3];

    double outY0 = Coefs0 * (endX - curX) * (endX - curX) * (endX - curX);
    double outY1 = Coefs1 * (endX - curX);
    double outY2 = Coefs2 * (curX - startX) * (curX - startX) * (curX - startX);
    double outY3 = Coefs3 * (curX - startX);

    return (outY0 + outY1 + outY2 + outY3);
    }

    void CCubicSpline::PushPoint(CPoint point)
    {
    vPoint.push_back(point);

    // 计算系数

    double xi[MAX_COUNT] = { 0.0};
    double yi[MAX_COUNT] = { 0.0};
    int count = vPoint.size();

    for (int i=0; i<count; i++)
    {
    CPoint point = vPoint[i];
    xi[i] = point.x;
    yi[i] = point.y;
    }


    if (count < 4)
    {
    return;
    }
    derivative(xi,yi, count, m_pCoefs);


    }

    if (vPoint.size() > 3)
    {
    int startX = vPoint[0].x;
    int EndX = 0;
    pDC->MoveTo(vPoint[0].x,vPoint[0].y);
    for (int i=1; i<vPoint.size(); i++)
    {
    EndX = vPoint[i].x;

    for (int curX=startX; curX<EndX; )
    {
    double curY = this->Spline3(startX, EndX, i -1 , curX);
    //pDC->Ellipse(curX-1,curY-1,curX+1,curY+1);

    pDC->LineTo(curX, curY);

    if (startX < EndX) curX++;
    if (startX > EndX) curX--;

    }
    startX = EndX;


    }


    }

    for (int i=0; i<vPoint.size(); i++)
    {
    CPoint point = vPoint[i];

    pDC->Ellipse(point.x-3,point.y-3,point.x+3,point.y+3);
    }

    // 差不多全在这儿了!  运行还不错...

  • 相关阅读:
    python软件开发目录规范
    模块与包
    匿名函数的使用
    三元表达式,列表生成式,字典生成式,生成器表达式
    Python函数进阶:生成器的原理及使用
    python迭代器的原理及应用
    PYTHON装饰器用法及演变
    文件操作补充
    pycharm的断点调试与TODO标记
    字符编码补充
  • 原文地址:https://www.cnblogs.com/signal/p/2425679.html
Copyright © 2020-2023  润新知