• [Python]贪心算法-Prim-和-Kruskal实现-最小生成树


    目标

    在连通网的所有生成树中,找到所有边的代价和最小的生成树,简称最小生成树问题.
    (简要的来说,就是在AOV网中找出串联n个顶点代价总和最小的边集)

    下面记录最小生成树的两种算法,Prim和Kruskal

    Prim算法思路

    1. 从任意一个顶点开始,每次选择与当前顶点最近的一个顶点,并将两点之间的边加入到树中
    2. 被选中的点构成一个集合,剩下的点是候选集
    3. 每次从已选择的点的集合中,查找花费最小的点,加入进来
    4. 同时在候选集中删去,
    5. 重复3和4,知道候选集中没有元素。

    Prim算法代码

    def cmp(key1, key2):
        return (key1, key2) if key1 < key2 else (key2, key1)
    
    
    def prim(graph, init_node):
        visited = {init_node}
        candidate = set(graph.keys())
        candidate.remove(init_node)  # add all nodes into candidate set, except the start node
        tree = []
    
        while len(candidate) > 0:
            edge_dict = dict()
            for node in visited:  # find all visited nodes
                for connected_node, weight in graph[node].items():  # find those were connected
                    if connected_node in candidate:
                        edge_dict[cmp(connected_node, node)] = weight
            edge, cost = sorted(edge_dict.items(), key=lambda kv: kv[1])[0]  # find the minimum cost edge
            tree.append(edge)
            visited.add(edge[0])  # cause you dont know which node will be put in the first place
            visited.add(edge[1])
            candidate.discard(edge[0]) # same reason. discard wont raise an exception.
            candidate.discard(edge[1])
        return tree
    
    
    if __name__ == '__main__':
        graph_dict = {
            "A": {"B": 7, "D": 5},
            "B": {"A": 7, "C": 8, "D": 9, "E": 5},
            "C": {"B": 8, "E": 5},
            "D": {"A": 5, "B": 9, "E": 15, "F": 6},
            "E": {"B": 7, "C": 5, "D": 15, "F": 8, "G": 9},
            "F": {"D": 6, "E": 8, "G": 11},
            "G": {"E": 9, "F": 11}
        }
    
        path = prim(graph_dict, "D")
        print(path)  # [('A', 'D'), ('D', 'F'), ('A', 'B'), ('B', 'E'), ('C', 'E'), ('E', 'G')]
    

    与Prim算法关注图的点不同,Kruskal算法更关注图中的边。

    Kruskal算法思路

    1. 首先对图中所有的边进行递增排序,排序标准是每条边的权值
    2. 依次遍历每条边,如果这条边加进去之后,不会使图形成环,那就加进去,否则放弃

    Kruskal算法虽然看起来思路清晰,但是如何判断图中是否成环,比较难理解。

    Kruskal算法代码

    def cmp(key1, key2):
        return (key1, key2) if key1 < key2 else (key2, key1)
    
    
    def find_parent(record, node):
        if record[node] != node:
            record[node] = find_parent(record, record[node])
        return record[node]
    
    
    def naive_union(record, edge):
        u, v = find_parent(record, edge[0]), find_parent(record, edge[1])
        record[u] = v
    
    
    def kruskal(graph, init_node):
        edge_dict = {}
        for node in graph.keys():
            edge_dict.update({cmp(node, k): v for k, v in graph[node].items()})
        sorted_edge = list(sorted(edge_dict.items(), key=lambda kv: kv[1]))
        tree = []
        connected_records = {key: key for key in graph.keys()}
    
        for edge_pair, _ in sorted_edge:
            if find_parent(connected_records, edge_pair[0]) != 
                    find_parent(connected_records, edge_pair[1]):
                tree.append(edge_pair)
                naive_union(connected_records, edge_pair)
        return tree
    
    
    if __name__ == '__main__':
        graph_dict = {
            "A": {"B": 7, "D": 5},
            "B": {"A": 7, "C": 8, "D": 9, "E": 5},
            "C": {"B": 8, "E": 5},
            "D": {"A": 5, "B": 9, "E": 15, "F": 6},
            "E": {"B": 7, "C": 5, "D": 15, "F": 8, "G": 9},
            "F": {"D": 6, "E": 8, "G": 11},
            "G": {"E": 9, "F": 11}
        }
    
        path = kruskal(graph_dict, "D")
        print(path)  # [('A', 'D'), ('D', 'F'), ('A', 'B'), ('B', 'E'), ('C', 'E'), ('E', 'G')]
    
    

    参考文章

    1. 图遍历算法之最小生成树Prim算法与 Kruskal算法)
    2. 图论(6):图的最小生成树问题 - Prim和Kruskal算法
    3. 判断成环
    4. 谈谈Kruskal与Prim这两种最小生成树算法(Python实现)
  • 相关阅读:
    rabbitmq使用__python客户端(消息接收者)
    Rabbitmq Exchange Type 说明
    rabbitmq使用__php客户端(消息发送者)
    rabbitmq使用__python客户端(消息发送者)
    安装python的rabbitmq扩展库
    安装rabbitmq服务器端
    课程1:历经5年锤炼(史上最适合初学者入门的Java基础视频)视频列表
    新笔记本JAVA环境配置,MySQL,navicat 安装
    局域网介质访问控制方法
    SQL Server 2008之DMF
  • 原文地址:https://www.cnblogs.com/sight-tech/p/13197982.html
Copyright © 2020-2023  润新知