• [Python]贪心算法-Dijkstra-实现


    目标

    带权重的有向图上单源最短路径问题。且权重都为非负值。如果采用的实现方法合适,Dijkstra运行时间要低于Bellman-Ford算法。

    思路

    1. 选择一个节点开始蔓延
    2. 计算自身到连接它的一级节点之间的距离, 全部作为候选集
    3. 在候选集中,找到距离最短的,对应的那个节点
    4. 删除这个节点在候选集中的信息
    5. 继续蔓延,还是找最小的距离
    6. 直到候选集为空

    最小距离的判断标准 dist[j] = min(dist[j], dist[i] + weight[i][j])

    完善版本

    import heapq
    import math
    
    def dijkstra(graph, init_node):
        pqueue = []
        heapq.heappush(pqueue, (0, init_node))  # min heap, sort data item automatically
        visited = set()  # actually you dont have to use this.
        weight = dict.fromkeys(graph.keys(), math.inf)
        weight[init_node] = 0
        connection_dict = {init_node: "Path: Start From -> "}  # save connection records
    
        while len(pqueue) > 0:
            pair = heapq.heappop(pqueue)  # Pop the smallest item off the heap
            cost, start = pair[0], pair[1]
            visited.add(start)
            for end in graph[start].keys():
                if end not in visited and cost + graph[start][end] < weight[end]:
                    # dist[j] = min(dist[j], dist[i] +  weight[i][j])
                    heapq.heappush(pqueue, (cost + graph[start][end], end))
                    connection_dict[end] = start
                    weight[end] = cost + graph[start][end]
    
        return {v: k for k, v in connection_dict.items()}, weight
    
    
    if __name__ == '__main__':
        graph_dict = {
            "A": {"B": 5, "C": 1},
            "B": {"A": 5, "C": 2, "D": 1},
            "C": {"A": 1, "B": 2, "D": 4, "E": 8},
            "D": {"B": 1, "C": 4, "E": 3, "F": 6},
            "E": {"C": 8, "D": 3},
            "F": {"D": 6},
        }
    
        path, distance = dijkstra(graph_dict, "A")
        print(path) # {'Path: Start From -> ': 'A', 'C': 'B', 'A': 'C', 'B': 'D', 'D': 'F'}
        print(distance) # {'A': 0, 'B': 3, 'C': 1, 'D': 4, 'E': 7, 'F': 10}
    

    最精简版本

    
    import heapq
    
    def dijkstra(graph, init_node):
        primary_queue = []
        heapq.heappush(primary_queue, (0, init_node))
        # the reason why i need to use this heap is because
        # i want to take advantage of its automatic sorting
    
        result = dict.fromkeys(graph.keys(), 123131)
        result[init_node] = 0
    
        while len(primary_queue) > 0:
            cost, start = heapq.heappop(primary_queue)
    
            for end in graph[start].keys():
                if result[start] + graph[start][end] < result[end]:
                    # dist[j] = min(dist[j], dist[i] +  weight[i][j])
                    heapq.heappush(primary_queue, (result[start] + graph[start][end], end))
                    result[end] = result[start] + graph[start][end]
    
        return result
    

    参考文章

    1. 最短路知识点总结(Dijkstra,Floyd,SPFA,Bellman-Ford)
    2. Python实现Dijkstra算法
  • 相关阅读:
    获取URL中参数
    Javascript this指针
    10分钟了解C#中的协变和逆变
    BCB写的简单的EXCEL合并
    Codeforces Round #316 (Div. 2) D
    Codeforces Round #316 (Div. 2) E
    fzu1873 Coin Puzzle
    hdu 3629 Convex
    几何统计 ACM ICPC
    hdu 5135 Little Zu Chongzhi's Triangles
  • 原文地址:https://www.cnblogs.com/sight-tech/p/13193810.html
Copyright © 2020-2023  润新知