• pandas.DataFrame.reset_index的使用介绍


    参考链接:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.reset_index.html#pandas-dataframe-reset-index

    DataFrame.reset_index(level=Nonedrop=Falseinplace=Falsecol_level=0col_fill='')[source]

    Reset the index, or a level of it.

    Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels.

    Parameters
    levelint, str, tuple, or list, default None

    Only remove the given levels from the index. Removes all levels by default.

    dropbool, default False

    Do not try to insert index into dataframe columns. This resets the index to the default integer index.

    inplacebool, default False

    Modify the DataFrame in place (do not create a new object).

    col_levelint or str, default 0

    If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level.

    col_fillobject, default ‘’

    If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated.

    Returns
    DataFrame or None

    DataFrame with the new index or None if inplace=True.

    简单来看,就是将索引变成columns内容,col_level与col_fill用在列名为多层索引的。

    示例代码

    In [59]: df                                                                                                 
    Out[59]: 
             class  max_speed
    falcon    bird      389.0
    parrot    bird       24.0
    lion    mammal       80.5
    monkey  mammal        NaN
    
    In [60]: df.reset_index()                                                                                   
    Out[60]: 
        index   class  max_speed
    0  falcon    bird      389.0
    1  parrot    bird       24.0
    2    lion  mammal       80.5
    3  monkey  mammal        NaN
    
    In [61]: df.reset_index(drop=True)                                                                          
    Out[61]: 
        class  max_speed
    0    bird      389.0
    1    bird       24.0
    2  mammal       80.5
    3  mammal        NaN
    
    In [62]:     
    

      

    上面演示了普通的用法,一个是将index编程了列内容,一个是将index删除了,都用了默认的数字index

    后面演示多层索引的示例。

    默认情况下,reset_index将会还原所有的索引

    In [62]: index = pd.MultiIndex.from_tuples([('bird', 'falcon'), 
        ...:                                    ('bird', 'parrot'), 
        ...:                                    ('mammal', 'lion'), 
        ...:                                    ('mammal', 'monkey')], 
        ...:                                   names=['class', 'name']) 
        ...: columns = pd.MultiIndex.from_tuples([('speed', 'max'), 
        ...:                                      ('species', 'type')]) 
        ...: df = pd.DataFrame([(389.0, 'fly'), 
        ...:                    ( 24.0, 'fly'), 
        ...:                    ( 80.5, 'run'), 
        ...:                    (np.nan, 'jump')], 
        ...:                   index=index, 
        ...:                   columns=columns)                                                                 
    
    In [63]: df                                                                                                 
    Out[63]: 
                   speed species
                     max    type
    class  name                 
    bird   falcon  389.0     fly
           parrot   24.0     fly
    mammal lion     80.5     run
           monkey    NaN    jump
    
    In [64]: df.reset_index()                                                                                   
    Out[64]: 
        class    name  speed species
                         max    type
    0    bird  falcon  389.0     fly
    1    bird  parrot   24.0     fly
    2  mammal    lion   80.5     run
    3  mammal  monkey    NaN    jump
    

      通过第一个参数的level的设置columns,可以指定需要还原的multiindex的名称

    In [75]: df                                                                                                 
    Out[75]: 
                   speed species
                     max    type
    class  name                 
    bird   falcon  389.0     fly
           parrot   24.0     fly
    mammal lion     80.5     run
           monkey    NaN    jump
    
    In [76]: df.reset_index(level='class')                                                                      
    Out[76]: 
             class  speed species
                      max    type
    name                         
    falcon    bird  389.0     fly
    parrot    bird   24.0     fly
    lion    mammal   80.5     run
    monkey  mammal    NaN    jump
    
    In [77]: df.reset_index(level='name')                                                                       
    Out[77]: 
              name  speed species
                      max    type
    class                        
    bird    falcon  389.0     fly
    bird    parrot   24.0     fly
    mammal    lion   80.5     run
    mammal  monkey    NaN    jump
    
    In [78]: df.reset_index(level='name', col_level=1)                                                          
    Out[78]: 
                    speed species
              name    max    type
    class                        
    bird    falcon  389.0     fly
    bird    parrot   24.0     fly
    mammal    lion   80.5     run
    mammal  monkey    NaN    jump
    
    In [79]: df.reset_index(level='class', col_level=0, col_fill='type')                                        
    Out[79]: 
             class  speed species
              type    max    type
    name                         
    falcon    bird  389.0     fly
    parrot    bird   24.0     fly
    lion    mammal   80.5     run
    monkey  mammal    NaN    jump
    

      col_fill参数为设置给mutil_index的默认项

  • 相关阅读:
    第一张图:每天初始化交易流程图
    Django部署服务时候报错:SQLite 3.8.3 or later is required (found 3.7.17)
    LOJ2494. 「AHOI / HNOI2018」寻宝游戏
    luoguP4429 [BJOI2018]染色
    LOJ2720. 「NOI2018」你的名字
    LOJ2262. 「CTSC2017」网络
    LOJ2398. 「JOISC 2017 Day 3」自然公园
    ULR1 B. 【ULR #1】光伏元件
    CF Good Bye 2020 题解&总结 A~G
    vue 导入.md文件(markdown转HTML)
  • 原文地址:https://www.cnblogs.com/sidianok/p/14366783.html
Copyright © 2020-2023  润新知