• 网格最短路径算法(Dijkstra & Fast Marching)


      Dijkstra算法是计算图中节点之间最短路径的经典算法,网上关于Dijkstra算法原理介绍比较多,这里不再多讲。值得一提的是,当图中节点之间的权重都为1时,Dijkstra算法就变化为一般意义上的广度优先搜索算法(Breadth-first search algorithm)。

      Dijkstra算法流程如下:

    Dijkstra算法流程

     

      在介绍Fast marching算法之前先提下Eikonal方程,Eikonal方程属于非线性偏微分方程,可以认为是一种近似波动方程,它的形式如下:

      Eikonal方程解u(x)的物理含义是从源点x0以速度f(x)到达计算域Ω内x点所需要消耗的最短时间。当f(x) = 1的特殊情况下,方程解就代表计算域Ω内的距离场。

      [Sethian et al. 1999]提出的Fast marching算法是一种求解Eikonal方程的数值方法。下面首先以二维正交栅格(栅格间距为h)为例,将方程左边的梯度项用一阶近似代替后可以得到:

    max(U – UA, U – UB, 0)2 + max(U – UC, U – UD, 0)2 = h2/f(x)2

      假设UA = min(UA, UB),UC = min(UC, UD),那么:

    (U – UA)2 + (U – UC)2 = h2/f(x)2

      当||UA – UC || ≤ h/f(x)时,

      当||UA – UC || > h/f(x)时,U = min(UA, UC) + h/f(x)。

     

           Fast marching算法也可以用于计算三角网格上的测地距离。对于三角面片x1x2x,,因此,Eikonal方程可以近似变为如下二次方程:

    (aTQa)U(x)2 + (2aTQb)U(x) + bTQb = 1/f(x)2

    其中:a = [1;1],b = –[Ux1;Ux2],M = [x – x1; x – x2],Q = (MMT) –1。通过求解上式方程可以得到x点的测地距离。

      Fast marching算法流程如下:

    Fast marching算法流程

     

     

      Dijkstra算法和Fast marching算法思想相似,不同之处在于Dijkstra算法利用节点之间的欧式距离进行更新,而Fast marching算法利用由Eikonal方程化简得到的近似偏微分方程进行更新。

     本文为原创,转载请注明出处:http://www.cnblogs.com/shushen

     

    参考文献:

    [1] J. A. Sethian, A. Vladimirsky. Fast methods for the eikonal and related Hamilton-Jacobi equations on unstructured meshes. (1999). Proceedings of the National Academy of Sciences, 97(11), 5699-5703.

  • 相关阅读:
    Thread.GetNamedDataSlot(String)
    .NET Core 常用加密和Hash工具NETCore.Encrypt
    .netcore在linux下使用P/invoke方式调用linux动态库
    IHttpAsyncHandler IHttpHandler
    Docker & ASP.NET Core 教程
    Docker在Linux上运行NetCore系列(一)配置运行DotNetCore控制台
    《异常检测》
    《awesome-AIOps》
    《Skyline 监控系统工作原理分析》
    《小团队撬动大数据——当当推荐团队的机器学习实践》
  • 原文地址:https://www.cnblogs.com/shushen/p/5381753.html
Copyright © 2020-2023  润新知