• Tensorflow学习教程代价函数


    Tensorflow学习教程------代价函数

     

    二次代价函数(quadratic cost):


    其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示样本的总数。为简单起见,使用一个样本为例进行说明,此时二次代价函数为:


    假如我们使用梯度下降法(Gradient descent)来调整权值参数的大小,权值w和偏置b的梯度推导如下:


    其中,z表示神经元的输入,σ表示激活函数。w和b的梯度跟激活函数的梯度成正比,激活函数的梯度越大,w和b的大小调整得越快,训练收敛得就越快。假设我们的激活函数是sigmoid函数:


    假设我们目标是收敛到1.0。1点为0.82离目标比较远,梯度比较大,权值调整比较大。2点为0.98离目标比较近,梯度比较小,权值调整比较小。调整方案合理。
    假如我们目标是收敛到0。1点为0.82目标比较近,梯度比较大,权值调整比较大。2点为0.98离目标比较远,梯度比较小,权值调整比较小。调整方案不合理。

    交叉熵代价函数(cross-entropy):
    换一个思路,我们不改变激活函数,而是改变代价函数,改用交叉熵代价函数:

    其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示样本的总数。

    权值和偏置值的调整与无关,另外,梯度公式中的表示输出值与实际值的误差。所以当误差越大时,梯度就越大,参数w和b的调整就越快,训练的速度也就越快。如果输出神经元是线性的,那么二次代价函数就是一种合适的选择。如果输出神经元是S型函数,那么比较适合用交叉熵代价函数。

    对数释然代价函数(log-likelihood cost):
    对数释然函数常用来作为softmax回归的代价函数,然后输出层神经元是sigmoid函数,可以采用交叉熵代价函数。而深度学习中更普遍的做法是将softmax作为最后一层,此时常用的代价函数是对数释然代价函数。
    对数似然代价函数与softmax的组合和交叉熵与sigmoid函数的组合非常相似。对数释然代价函数在二分类时可以化简为交叉熵代价函数的形式。

    在tensorflow中用:
    tf.nn.sigmoid_cross_entropy_with_logits()来表示跟sigmoid搭配使用的交叉熵。
    tf.nn.softmax_cross_entropy_with_logits()来表示跟softmax搭配使用的交叉熵。

  • 相关阅读:
    FFmpeg4.0 的filter机制的架构与实现.之二 结构体关系与定义
    ffmpeg filter过滤器 基础实例及全面解析
    Filter初始化 filter
    FFmpeg4.0 的filter机制的架构与实现.之三 Filter实现的源码分析
    C语言结构体初始化的四种方法
    ChilliCream 是一个开源免费的 GraphQL 平台
    十道算法题
    速战速决 Python python 基础: 函数
    速战速决 Python python 数据类型: 集合类型
    速战速决 Python python 高级: 迭代器,生成器
  • 原文地址:https://www.cnblogs.com/shuimuqingyang/p/9967838.html
Copyright © 2020-2023  润新知