• 项目实践 | 行人跟踪与摔倒检测报警


    1、简介

    本项目的目的是为了给大家提供跟多的实战思路,抛砖引玉为大家提供一个案例,也希望读者可以根据该方法实现更多的思想与想法,也希望读者可以改进该项目种提到的方法,比如改进其中的行人检测器、跟踪方法、行为识别算法等等。

    本项目主要检测识别的行为有7类:Standing, Walking, Sitting, Lying Down, Stand up, Sit down, Fall Down

    2、项目方法简介

    本文涉及的方法与算法包括:YOLO V3 Tiny、Deepsort、ST-GCN方法,其中YOLO V3 Tiny用于行人检测、DeepSort用于跟踪、而ST-GCN则是用于行为检测。

    这里由于YOLO与DeepSort大家都已经比较了解,因此这里只简单说明一下ST-GCN 的流程,这里ST-GCN 的方法结构图如下:

    图片

    给出一个动作视频的骨架序列信息,首先构造出表示该骨架序列信息的图结构,ST-GCN的输入就是图节点上的关节坐标向量,然后是一系列时空图卷积操作来提取高层的特征,最后用SofMax分类器得到对应的动作分类。整个过程实现了端到端的训练。

    GCN 帮助我们学习了到空间中相邻关节的局部特征。在此基础上,我们需要学习时间中关节变化的局部特征。如何为 Graph 叠加时序特征,是图卷积网络面临的问题之一。这方面的研究主要有两个思路:时间卷积(TCN)和序列模型(LSTM)。

    ST-GCN 使用的是 TCN,由于形状固定,可以使用传统的卷积层完成时间卷积操作。为了便于理解,可以类比图像的卷积操作。st-gcn 的 feature map 最后三个维度的形状为(C,V,T),与图像 feature map 的形状(C,W,H)相对应。

    • 图像的通道数C对应关节的特征数C。

    • 图像的宽W对应关键帧数V。

    • 图像的高H对应关节数T。

    在图像卷积中,卷积核的大小为『w』×『1』,则每次完成w行像素,1列像素的卷积。『stride』为s,则每次移动s像素,完成1行后进行下1行像素的卷积。

    在时间卷积中,卷积核的大小为『temporal_kernel_size』×『1』,则每次完成1个节点,temporal_kernel_size 个关键帧的卷积。『stride』为1,则每次移动1帧,完成1个节点后进行下1个节点的卷积。

    训练如下:

    图片

    输入的数据首先进行batch normalization,然后在经过9个ST-GCN单元,接着是一个global pooling得到每个序列的256维特征向量,最后用SoftMax函数进行分类,得到最后的标签。

    每一个ST-GCN采用Resnet的结构,前三层的输出有64个通道,中间三层有128个通道,最后三层有256个通道,在每次经过ST-CGN结构后,以0.5的概率随机将特征dropout,第4和第7个时域卷积层的strides设置为2。用SGD训练,学习率为0.01,每10个epochs学习率下降0.1。

    ST-GCN 最末卷积层的响应可视化结果图如下:

    图片

     

    本文项目主函数代码如下:

    import os
    import cv2
    import time
    import torch
    import argparse
    import numpy as np

    from Detection.Utils import ResizePadding
    from CameraLoader import CamLoader, CamLoader_Q
    from DetectorLoader import TinyYOLOv3_onecls

    from PoseEstimateLoader import SPPE_FastPose
    from fn import draw_single

    from Track.Tracker import Detection, Tracker
    from ActionsEstLoader import TSSTG

    # source = '../Data/test_video/test7.mp4'
    # source = '../Data/falldata/Home/Videos/video (2).avi' # hard detect
    source = './output/test3.mp4'
    # source = 2
    def preproc(image):
    """preprocess function for CameraLoader.
    """
    image = resize_fn(image)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    return image


    def kpt2bbox(kpt, ex=20):
    """Get bbox that hold on all of the keypoints (x,y)
    kpt: array of shape `(N, 2)`,
    ex: (int) expand bounding box,
    """
    return np.array((kpt[:, 0].min() - ex, kpt[:, 1].min() - ex,
    kpt[:, 0].max() + ex, kpt[:, 1].max() + ex))


    if __name__ == '__main__':
    par = argparse.ArgumentParser(description='Human Fall Detection Demo.')
    par.add_argument('-C', '--camera', default=source, # required=True, # default=2,
    help='Source of camera or video file path.')
    par.add_argument('--detection_input_size', type=int, default=384,
    help='Size of input in detection model in square must be divisible by 32 (int).')
    par.add_argument('--pose_input_size', type=str, default='224x160',
    help='Size of input in pose model must be divisible by 32 (h, w)')
    par.add_argument('--pose_backbone', type=str, default='resnet50', help='Backbone model for SPPE FastPose model.')
    par.add_argument('--show_detected', default=False, action='store_true', help='Show all bounding box from detection.')
    par.add_argument('--show_skeleton', default=True, action='store_true', help='Show skeleton pose.')
    par.add_argument('--save_out', type=str, default='./output/output3.mp4', help='Save display to video file.')
    par.add_argument('--device', type=str, default='cuda', help='Device to run model on cpu or cuda.')
    args = par.parse_args()

    device = args.device

    # DETECTION MODEL.
    inp_dets = args.detection_input_size
    detect_model = TinyYOLOv3_onecls(inp_dets, device=device)

    # POSE MODEL.
    inp_pose = args.pose_input_size.split('x')
    inp_pose = (int(inp_pose[0]), int(inp_pose[1]))
    pose_model = SPPE_FastPose(args.pose_backbone, inp_pose[0], inp_pose[1], device=device)

    # Tracker.
    max_age = 30
    tracker = Tracker(max_age=max_age, n_init=3)

    # Actions Estimate.
    action_model = TSSTG()

    resize_fn = ResizePadding(inp_dets, inp_dets)

    cam_source = args.camera
    if type(cam_source) is str and os.path.isfile(cam_source):
    # Use loader thread with Q for video file.
    cam = CamLoader_Q(cam_source, queue_size=1000, preprocess=preproc).start()
    else:
    # Use normal thread loader for webcam.
    cam = CamLoader(int(cam_source) if cam_source.isdigit() else cam_source,
    preprocess=preproc).start()

    # frame_size = cam.frame_size
    # scf = torch.min(inp_size / torch.FloatTensor([frame_size]), 1)[0]
    outvid = False
    if args.save_out != '':
    outvid = True
    codec = cv2.VideoWriter_fourcc(*'mp4v')
    print((inp_dets * 2, inp_dets * 2))
    writer = cv2.VideoWriter(args.save_out, codec, 25, (inp_dets * 2, inp_dets * 2))

    fps_time = 0
    f = 0
    while cam.grabbed():
    f += 1
    frame = cam.getitem()
    image = frame.copy()

    # Detect humans bbox in the frame with detector model.
    detected = detect_model.detect(frame, need_resize=False, expand_bb=10)

    # Predict each tracks bbox of current frame from previous frames information with Kalman filter.
    tracker.predict()
    # Merge two source of predicted bbox together.
    for track in tracker.tracks:
    det = torch.tensor([track.to_tlbr().tolist() + [0.5, 1.0, 0.0]], dtype=torch.float32)
    detected = torch.cat([detected, det], dim=0) if detected is not None else det

    detections = [] # List of Detections object for tracking.
    if detected is not None:
    # detected = non_max_suppression(detected[None, :], 0.45, 0.2)[0]
    # Predict skeleton pose of each bboxs.
    poses = pose_model.predict(frame, detected[:, 0:4], detected[:, 4])

    # Create Detections object.
    detections = [Detection(kpt2bbox(ps['keypoints'].numpy()),
    np.concatenate((ps['keypoints'].numpy(),
    ps['kp_score'].numpy()), axis=1),
    ps['kp_score'].mean().numpy()) for ps in poses]

    # VISUALIZE.
    if args.show_detected:
    for bb in detected[:, 0:5]:
    frame = cv2.rectangle(frame, (bb[0], bb[1]), (bb[2], bb[3]), (0, 0, 255), 1)

    # Update tracks by matching each track information of current and previous frame or
    # create a new track if no matched.
    tracker.update(detections)

    # Predict Actions of each track.
    for i, track in enumerate(tracker.tracks):
    if not track.is_confirmed():
    continue
    track_id = track.track_id
    bbox = track.to_tlbr().astype(int)
    center = track.get_center().astype(int)

    action = 'pending..'
    clr = (0, 255, 0)
    # Use 30 frames time-steps to prediction.
    if len(track.keypoints_list) == 30:
    pts = np.array(track.keypoints_list, dtype=np.float32)
    out = action_model.predict(pts, frame.shape[:2])
    action_name = action_model.class_names[out[0].argmax()]
    action = '{}: {:.2f}%'.format(action_name, out[0].max() * 100)
    if action_name == 'Fall Down':
    clr = (255, 0, 0)
    elif action_name == 'Lying Down':
    clr = (255, 200, 0)

    # VISUALIZE.
    if track.time_since_update == 0:
    if args.show_skeleton:
    frame = draw_single(frame, track.keypoints_list[-1])
    frame = cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 1)
    frame = cv2.putText(frame, str(track_id), (center[0], center[1]), cv2.FONT_HERSHEY_COMPLEX, 0.4, (255, 0, 0), 2)
    frame = cv2.putText(frame, action, (bbox[0] + 5, bbox[1] + 15), cv2.FONT_HERSHEY_COMPLEX, 0.4, clr, 1)

    # Show Frame.
    frame = cv2.resize(frame, (0, 0), fx=2., fy=2.)
    frame = cv2.putText(frame, '%d, FPS: %f' % (f, 1.0 / (time.time() - fps_time)), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
    frame = frame[:, :, ::-1]
    fps_time = time.time()

    if outvid:
    writer.write(frame)

    cv2.imshow('frame', frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
    break
    # Clear resource.
    cam.stop()
    if outvid:
    writer.release()
    cv2.destroyAllWindows()

    参考

    [1].https://arxiv.org/abs/1801.07455

    [2].https://blog.csdn.net/haha0825/article/details/107192773/

    [3].https://github.com/yysijie/st-gcn

  • 相关阅读:
    杭电2031进制转换
    杭电2033人见人爱A+B
    【转】到底怎么样才叫看书?
    方便单个实体更新的DbContext扩展方法,比如Edit页面
    使用Newtonsoft.Json
    代码配置 vs. 配置文件
    进程到创建
    C#+VBA 操作EXCEL(转)
    基于定位的社交应用Foursquare开源网址(wp7)
    深入理解计算机系统实验
  • 原文地址:https://www.cnblogs.com/shuimuqingyang/p/14372200.html
Copyright © 2020-2023  润新知